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Abstract

We derive an asymptotic formula for p,, (N, M), the number of partitions of integer n with
part size at most N and length at most M. We consider both N and M are comparable to
v/n. This is an extension of the classical Hardy-Ramanujan formula and Szekeres’ formula.
The proof relies on the saddle point method.

1 Introduction

A partition of integer n is a sequence of positive integers A\; > - -- > A\ > 0 satisfying

k
E /\i =n,
i=1

where k is the length and the );’s are the parts of the partition. Let p, be the number of all
partitions of n. In a celebrated paper [7], Hardy and Ramanujan proved the asymptotic formula

1 2n
n ~ ——— —_— . 1'1
b 4+/3n P < 3 W) (.h

For two positive sequences {a, } and {b,, }, we use a,, ~ by, if lim,,_,o0 an /by, = 1.

Let p,(N) be the number of partitions of n with part size at most N. Note that p,(n) =
Pn. Szekeres [18, 19] obtained the asymptotic formulas for p,(N) as n tends to infinity, using
substantially different approaches for two distinct though slightly overlapping ranges of N. In
particular, Szekeres’ formula holds if « := N/y/n > C > 0. The formula was reproduced later
by Canfield [3] using recursive equations for p,,(N) and Taylor expansion. It is observed in [3]
that Szekeres’ formula could be combined into a single form

pla)exp | (2p(a) - alog(1 — 7)) /n]

23/27m\/1 — (%2 + 1) e—ap(c)

!'School of Statistics, University of Minnesota, 224 Church Street, S. E., MN55455, USA, jiang040@umn.edu. The
research of Tiefeng Jiang is supported in part by NSF Grant DMS-1209166 and DMS-1406279.

*Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong
Kong, kewang @ust.hk. Ke Wang is supported by by HKUST Initiation Grant IGN16SCO05.

pn(on/n) = (1 + O(n*l/‘”f)) (1.2)




as n — 0o, where p(a) > 0 is the unique solution to the implicit equation
p(a)? = Lig(1 — e~ 2P(@)) (1.3)

and Liy is Spence’s function, or dilogarithm, defined for complex number |z| < 1 as
2z
Lis(z) = kz_l 2

Since p(«) is an increasing function and satisfies

[\

) 7
p(0)=0 and  lim p(a) = NGk

it can be checked that when o — oo, the right side of (1.2) converges to the right side of (1.1).

Several years later, Romik [15] provided another proof of (1.2) using probabilistic methods.

In this paper, we focus on p,, (NN, M), the number of partitions of n with part size at most N
and length at most M. The p, (N, M) forn = 0,..., NM are also called the coefficients of the
q-binomial coefficients or Gaussian binomial coefficients. In [16, Theorem 2.4], the asymptotic
behavior of p, (N, M) has been investigated assuming M is fixed and N gets arbitrarily large.
Very recently, Richmond [14] derived the asymptotic formula for p,, (N, M) when both N and
M are close to their expected values @ log(@) (see [4] for the distributions of the length and
largest part of a uniform integer partition). When n is close to N M /2, an asymptotic formula for
pn(N, M) was obtained before by Takdcs [20] . More precisely, whenever N — oo, M — oo,
IN — M| =0O(VM+ N)and [n — NM/2| = O(/NM(N + M)), it was shown in [20] (see
also [1]) that

_(N+M 6 6(n — NM/2)?
pn(N?M>_< N >\/TrNM(N+M+1)eXp(_NM(N+M+1)>(1+0(1))'

(1.4)

In this paper, we aim to complement this result by deriving asymptotic formulas for p,, (N, M)
when n is around N M /7 with 7 # 2. We prove such formulas by imposing some extra require-
ment on 7 (see Theorem 1 and discussion in the end of Section 1.1). Our motivation to derive such
formulas lies in studying the limiting distribution of a partition chosen uniformly from the set of
restricted partitions P, (IN), that is, partitions of n with part size at most N, for the entire range
1 < N < n. Currently, the uniform distributions on P, (n) (see [4, 6, 12]), P, (V) for N fixed
integer (see [8]) and P, (V) for N = o(nl/ 3) (see [9]) have been studied. We believe the asymp-
totic formula of p,, (N, M) plays an important role in understanding the uniform distribution on
Pn(N) for other values of V. This will be explored in future research.

1.1 Main result

For positive integers n, M, N, we denote



THEOREM 1. Let ¢ € (0,1/8) be given. Then uniformly for N > 4\/n and M > 4./n, we have,
as n — oo, that

1 — e—(a+B)g(e,B) eVnK(a,B)
27r\/m (1—eo9(@P))(1—ePo@B)) — n

where g(a, 3) > 0 is the unique solution to the implicit equation

pn(N, M) =

(14 0m™74+)),

g2(Oé, B) = Liy(1 — e—ag(aﬁ)) + Liy(1 — e—ﬁg(a,ﬂ)) Lip(1 — (a+6)g(a,ﬂ))

o (a+ 8¢ (. B)  o’¢*(a,B)  B¢* (o B)
Lo, ) =29%(. B) + gl =1~ sastef) — 1 sos(@f) — 1’
1

g9(a, B)

A few remarks regarding Theorem 1 are in order.

2
K(a,B) = g(a, B) + (% + Lig(e~@+®9(@B)y _ 1, (e=09(@B)) _ Ly (e=P9(h) )),

REMARK 1.1. The uniqueness and existence of g(a, 3) > 0 is guaranteed by Lemma 2.4. .

(a+B)g(a,B) .
REMARK 1.2. Al of g(c, B), L(«v, B), K(ov, ) and \/ e ey in Da(N, M) in
Theorem 1 are bounded from above and from below by two umversal positive constants for all
a, B € [4,00]. The error term O(n~'/**€) is also uniform in a, § € [4, 0.

REMARK 1.3. If we do not put restrictions on either the part size or the length of the partition,
then either o or [ is equal to infinity in our setting, respectively. In this case, the asymptotic
formula discovered in Theorem 1 is identical to the Szekeres’ formula (1.2).

Let us assume 3 = oo (by (2.3) the same will apply to the case o = oo). We first notice that
g(a,00) = p(a), where p(«) is the one in (1.3), and secondly,

1 2 . —anla
K(a,00) = p(a) + m (6 — Lis(e ol )))

= p(a) + p(la) [Lig(l — efap(a)) — ap(a) log(l _ efap(a))]
— 2p(a) — alog(1 — (),

where we use (2.6) in the second identity. Also, it is easy to check that

042

L(a,00) = 2p*(a) 1 - 2(eart@ — 1)

Therefore, by plugging these into p, (N, M) in Theorem 1, we will have (1.2).

We derive the asymptotic formula for p,(«y/n,3y/n) in Theorem 1 assuming « and [ are
greater than 4. Our proof uses the saddle point method; see [11, Section 12] or [5, Chapter
8] for a detailed introduction to this method. For the case when «, 3 are both small, we could
combine Theorem 1 and p, (N, M) = pprn—n(M, N) (see (2.4)) to derive the formula, since both



M/vVMN —nand N/+/MN — n will be large. For instance, this would apply if max(«, 5) <
\/16/15.

Finally, we conjecture Theorem 1 holds for arbitrary «, 5 > 0 as long as af = NM/n > 2.
For the remaining case 1 < a8 < 2, we can apply the formula for pyn_pn (M, N) = pp(N, M)
since NM/(NM —n) = af/(af — 1) > 2. Therefore, combining (1.4) with Theorem 1, the
asymptotic formula for p,,(N, M) is clear for arbitrary N/+/n € (0, +oc] and M //n € (0, 40o0].
The stronger assumption min(c, 3) > 4 in Theorem 1 appears to be only a technical condition
(see Lemma 2.5) and is used to control the O(n -1/ 4+¢) error term in the formula. It could be
pushed to, say, min(c, ) > 2.5 with advanced help of Maple. We did not try to optimize the
lower bound of min(«;, /3).

The paper is organized as follows. In Section 2, we will introduce some background, and
set up our calculation of obtaining the asymptotic formula in Theorem 1. Some analytic lemmas,
which will be used later, are also included. In Section 3, we will carry out the detailed calculations.
We will first derive the main term, and estimate the error term afterwards.

We note that shortly after a preprint version of this paper appeared on the arXiv, another
preprint [10] appeared on the arXiv which derives an asymptotic formula for p,,(N, M) using a
probabilistic approach. In our notations, they obtained an asymptotic formula for p,, (N, M) when
af > 2 and assuming (v, 3) is in an arbitrarily fixed compact set K C {(z,y) € R? |z > 0,y >
0}, with an error bound o(1) depending on the compact set K.

Notations: We use standard asymptotic notations o, O as n tends to infinity. We denote a < b if
there is a universal positive constant C' such that a < Cb.

Acknowledgement: We would like to thank the referee for many helpful suggestions to improve
the exposition of the paper.

2 Preliminaries

In this section, we will first recall the generating function of p,, (IV, M) and Spence’s functions, and
show some of their properties that will be used. We will see a connection between the generating
function of p, (N, M) and Spence’s functions in Lemma 2.3. And then, we express p, (N, M) as
an integral using Cauchy’s integral formula, and it is the integral that we are going to estimate. In
the end of this section, we prepare some lemmas for the detailed proof of Theorem 1 in Section 3.
The usage of each lemma is explained before each of their statements.

2.1 Background materials

We begin with some basic properties of p,, (N, M); see [2, Chapter 3] for a comprehensive intro-
duction. Note that p,(N,M) = 0if n > M x N and p,(N,M) = 1if n = M x N. Since
pn(N, M) — p,(N, M — 1) counts the number of partltlons of n with length exactly M and part
size at most V, thatis 1 < \; < N for1 <i < M and ZZ 1 A = n, by considering i =\ —

it follows easily that

pn(Na M) _pn(N7M - 1) :pn—M(N - 17M) (21)



Denote G(NN, M; q) the generating function of p,, (NN, M) for n > 0. Thus

G(N,M;q) = pa(N, M)q" ZmNM
n>0

The generating function G(N, M q) has an explicit expression and is usually referred to as
the Gaussian polynomial. The following lemma can be found at [2, Theorem 3.1]. We include the
proof for the readers’ convenience.

LEMMA 2.1. For M, N > 0,

N+M j N+M (1 i
G(N, M:;q) = L= ) = [ (1 1 ), 2.2)
L0 -) ML a—-¢)  TIL0-¢)

Proof. Tt follows from (2.1) that

G(N,M;q) = G(N,M — 1;q) + ¢" - G(N — 1, M;q).
Denote the RHS of (2.2) by G (N, M; q). By direct calculation, we see that

G(N,M;q) = vaﬁM?l(liqj) i

s [ a-) [ a—g) 1-¢Y

1—q + (1 —¢")
1—qgM

= G(N,M—1;9)+¢" - G(N —1,M;q).

= G(N,M —1;q)-

Besides, it is easy to check that G(N, M; ¢) and G (N, M; q) satisfy the same initial conditions

G(N,0;q) = G(0,M;q) = 1;
G(N,0;9) = G(0, M;q) = 1.

Therefore, G(N, M; q) = G(N, M; q). =

The following properties of p,, (N, M) can be verified easily from the Ferrers diagram of
partitions. We also refer to [2, Theorem 3.10] for a proof.

LEMMA 2.2.

pn(N, M) = p, (M, N); (2.3)
(N, M) = prrn—n(M, N). (2.4)

It was first proved by Sylvester [17] that p,, (N, M) is unimodal and

1<I7£1<a])\<[Mpn(N M) = Piinm (N, M). (2.5)



Now let us recall Spence’s function, or dilogarithm, which is defined for complex numbers
|z| < 1as

5l

Sk
2

Lig(z) = )
k=1

It has an analytic continuation for z € C \ [1, 00) given by

Z logu

Zlog(1 —
Liy(2) = —/ M du, or equivalently Liy(1—z) = / du,
0 1

U 1—u

where log is the principal branch of the logarithm function. Lis(z) can be continuously extended
to z = 1, and Lig(1) = > 722, % = 72/6. Note that by a change of variable s = — log(t), we

have
v loot log(1/v)
Lig(l—v)—/ o8 dt—/ 5 ds.
1 1—1¢ 0 e’ —1

Equivalently, we have for z > 0,

T t 2
/0 — dt = Lig(1 —e %) = % +z-log(l —e™*) — Lia(e™*), (2.6)

where the last identity follows from the property that

1-6 s .
log(1 — log(1 — 1
Lis(2) + Lis(1 — 2) = lim <_/ Og(u)du_/ Mdu+/ og du)
0 1 1

6—0t U -5 U -5 1—u
2 z

™ .
=% 51—l>%l+ 1_§d <log(1 —u) logu>

7T2

=5 log(z) - log(1 — 2).

2.2 Setting up of the calculation

By Cauchy’s integral formula,

1 G(N,M;z)
(N, M) = — — 7 d
p ( ) o /|z|:r ont1 z

for any 0 < 7 < 1. We substitute z = e~ (**") and for convenience, denote
[[5 (1 — e 7))

H;V:l(l — e—i(vtiw))

fv+iw) = fyau(v—+iw) = G(N, M; e~ 0Ty = (2.7)

Therefore,

1 [T : 1 [T A ,
pn(N, M) = — F v+ iw)e™ VT gy = — / elos F(vtiw) gn(vtiw) gy, (2.3)
2 27

—T —T



for every v > 0. In the end, for our purpose, we will choose v = ¢ - n!/2 for some constant ¢ > 0.
In Section 3, we will show that the main term in the above integral is

wo . .
i / elog f(v+zw)en(v+lw) dw 2.9)
2m

—wo

with wy = n=3/4+¢/3_ and we will prove that what is left in the integral is a lower order term.

2.3 Supporting lemmas
To estimate (2.9), we shall first analyze the function log f(z).

LEMMA 2.3. Assume z = v + 1w with v > 0,
the right half plane, that is, v/|z| = Re(z)/|z
for|z| > m with some ¢ > 0, we have

z| < 1 and assume z stays within some angle in
> A for some X\ > 0. Recall f(z) in (2.7). Then

log f(z) = % <7§ + Lig(e #WNHM)Y _ Lis(e7*N) — Liz(e_ZM))

1 1 1. (1—e#N)(1—e M)
_Elog <z> —ilog | o=s(NAD) —log V271 + O(|2|),

where log is the principal branch of the logarithm function.

Proof. Since

M+N ' N '
log f(z) = Y log(1—e %)= log(l —e7),
j=M+1 Jj=1

by Taylor expansion,

M+N oo L N oo L
ogf(z) = = > > —5—+>> %
j=M+1k=1 =1 k=1
N k
k=1 Jj=1 j=M+1
B i 1 esz(l esz N)(l esz M)
N k 1 — e k=
k=1
i 1 (1 e—kz N)(l _e—kz~M)
= A _—
P kz ekz — 1

Now we compare log f(z) with another summation.

e 1 efk:z
—kz-N —kz-M
logf(z)—z-];:l(l—e )(1_6 )<k22’2 B 2k2>
> 1 1 ek
— . 1— —kz-N 1— —kz-M . )
: Z( ° J(1—e ) kz(ekz —1) k222 * ok

k=1



Define ¢(z) = 91(z) - ¥2(z) where
Yi(z) = (1 — e VF)(1 - e M)

1 1 e *
e =TmTy T2t

It is easy to verify that the Laurent expansion of () is equal to —=; + A(z) where A(2) is
analytic and A\(0) = 0. Thus 1)2(z) and v(z) are analytic in the considered region.
Now we can express

> 1 ek >
—kz N —kz-M _
log f(z) — z - Zl —e ) <k222 - 2]%) = kZ:lZ@ZJ(k‘z) (2.10)

Let us compute the summation on the RHS of (2.10). It is natural to use an integral to approximate
the summation and we control the difference. Denote v the ray starting from origin and passing
through 2. It is clear the integral f7 ¥ (u) du is convergent. We are going to show that

2(kz) — [ (u)du
> otk - [

Let ; be the line segment on  from the point (k — 1)z to the point kz for k£ > 1. Therefore, we
have

=0(|z). @2.11)

_ /¢(u) du| < |2¢(z) — / Y(u)du| + Z (zw(kz) - / P(u) du) | .
v 7 k=2 Tk
Since v(z) is analytic at z = 0, we estimate the first term by
2p(z) — | ¥(u)du| = O(]2)).
71

For the other term, by integration by parts, we have

Yu)du = kzp(kz) — (k—1)z¢((k—1)z) — / u’ (u) du

Tk

= z(kz) +/ (k= 1)z — u)¢'(u) du.

Thus

(k2 — / ) do

/((k—l)z—u)w'(u)du
[zl max (ju = (k = 1)z] - [¢'(w)])

uey,

|2 max [/ (u)] < IZ!Qrngf(llbi(U)wz(U)l + 1 () (w)]).

IA

IN



Since |11 (u)| and |¢2(u)| are universally bounded on ~; for & > 2, to show (2.11), it is enough
to show that for i = 1, 2,

o0
|22+ > max [vi(w)] = O(|2]). (2.12)
UEVE
k=2
In the below we will first prove (2.12) for 2, and then for ;.
Note that
1 1 1 2 1 1
/
¥a(u) = 2t B ue @

w2t —1)  w(er—1)  u(e —1)

Recall v/|z| = Re(z)/|z| > A. Since |15 (u)| is analytic and thus bounded for v € ~;, where
2 <k <1/(\z|) + 1, it follows that
1
2 / _ 2. 1\ _
S vl =0 (kR ) = 0(:D:

z
2<k<1/A|z|+1 |

For k > 1/\|z| + 1, we have e*~Dv > ¢(h=DAl » ¢ and thus e*—Dv — 1 > ek=Dv /9,
Therefore,

B30 max|uhu)]

k1Nl
1 1
< 920z2. - - 2. - -
< 2l > wers [uller — 1| + 2] . e [uPler — 12
E>1/\|z|+1 k>1/\|z|+1
1
2
HEP D maen
E>1/M|z|4+1
1 1
< 6lz)%- 4212 . -
< 6l > (k — 1)2[z|2e(e—Do +alzt Y (& — 1)3]2
E>1/\|z|+1 E>A\|z|+1
6 4 1
< Z eﬂ‘f‘m Z EZO(M);
k>1/)|2| k>1/)|2|
where the last inequality follows from the estimates
1 &1 1 1 1
> wcXam-re==o()=o(y)
k>1/A|2| k=0
1 /°° 1 )
— < — dz = O(|2]%).
P

k>1/Az|

Hence, we proved (2.12) for 5.

Now, let us prove (2.12) for ¢;. Since minye, [eV*| = minye-, eN'Re(u) > o(k—1)N-Re(z) —



e(k_l)N”, we obtain
[e's) 00 —Mu —Nu
2 / _ 2 1—e ’ 1—e |
S maxlvtl = Y (VI ar
k=2 k=2
oo
N M
2
< 2| Z <€Nv(k—1) + 6Mv(l~c—1)>

k=2
21z (Nv-e™®N  My.e M
< - =0
= Ty ( T A p— (=)

by the assumption |z| < v/\, where we used the fact that the function % is bounded on (0, c0).
This finishes the proof of (2.12). So, (2.11) is proved.
Since 1 (u) is analytic in the considered region, by Cauchy integral theorem, it is standard to

show that o
/w(u) du :/ Y(x) de.
¥ 0

Combining (2.11) and (2.10), we obtain

[e’e] —kz [e’e]
log f(z) = 2 ) (1—e " N)(1—eh M) (k;ZQ - e%z ) +/0 Y(x)dz +O(|z]). (2.13)

k=1
It remains to estimate the first two terms on the RHS of (2.13).
We split the first term into two parts,

- —Kkz- —Kkz- 1 e—k’z
2y (1—e PNy —e* M)(k2z2_2k:z>

k=1
B li (1 o e—kz-N)(l o e—kz-M) B 1 i e—kz(l o e—kz-N)(l o e—kz-M)
oz k2 2 k
k=1 k=1
By the definition of Spence’s function, we have
1 (1 _ e—k‘z~N)(1 _ 6—kz~M) 1 1 e~ k=N e~ k=M e~ kz(N+M)
;Z L2 :;Z 2 k2 T g2 + 12
k=1 k=1
1 (7° . ¢ —z(N+M) . —2N « ( —zM
:; E—I—ng(e )—LIQ(G )—ng(e ) .
Since Y 7%, e %% /k = —log(1 — e~*), we have
1 o e—kz(l _ e_kz'N)(l _ e—k:z~M)
2 P k
_ 1 log(1 — ¢%) — }i 1 (e—kz(N-H) 4ok ML) _ e—kz(M—i-N-i-l))
2 P k
1 B 1 (1 _ efz(N+1))<1 _ efz(M+1))
= —ilog(l—e Z)—|—§10g | oGN]

1 1 1. (1—e?N)(1—e*M)
= 710g <Z> + §log 1— e—Z(M-i-N) +O(|Z’),

10



l—e™ ™

where the last identity follows from the fact that lim,,_,q % log( m

) exists, and thus, the func-
tion % log(¥) is bounded around u = 0, implying that

%10g <1> = —%log(l —e %)+ O(]z]).

z

Hence, we have for the first term on the RHS of (2.13) that

(1 _ esz-N)(l . esz-M) 1 . e—kz
k222 2kz

-

k=1
2
! (”6 + Lig(e #WN+M)y _ Liy(e™*V) — Lig(e_ZM)> (2.14)
z
1 1 1. (1—e?M)(1 —e*M)
_ilog (z) —§10g 17€7Z(M+N) +O(|Z|)

Now we calculate the second term on the RHS of (2.13). We have
| v = [Ty [Tl 0907 - N My ) ds
0 0 0
= —logVv2r+ / (e-WH+M)z _ =Nz _ o=Mzyy, (3 du,
0

where the calculation of [* vs(x) dz = —log /2 is given in [13, Page 125]. Since thy(x) is
bounded, we have

0

= 0 (/ (e-(N+M)z 4 =Nz | =Mz dx)
0

- o( ! +1+1>:O(|z|).

Hence,
(o]
/ W) dz = —log Var + O(|2)). 2.15)
0
Putting the equations (2.13), (2.14) and (2.15) together, we prove Lemma 2.3. ]

We will use the following lemma to change the variables in our calculations. Instead of us-
ing directly the variables « and  in Theorem 1, we will use the variables c¢; and cs defined in
(2.16) in the next lemma, which will significantly simplify our calculations. So we will derive our
asymptotic formula of p,, (N, M) in terms of ¢; and ¢ first, and change back to « and 5 in the
end.

LEMMA 2.4. For every a, 3 € (0,00) such that a3 > 2, there exist unique c1,cy > 0 satisfying
the equations:
c1 =a-Alc,c), c2=p8-Ac1,c2), (2.16)

A T g [Ty 2.1
(c1,62) = /0 1 33—/62 1% (2.17)

11

where




Moreover, if min(a, ) > \/5 + 6 for some & > 0, then there exist two constants A>0andé >0
both depending only on § such that

min(cy,c2) > ¢ and A(cy,cz) > A. (2.18)
In particular, if min(«, §) > 4, then min(cy, c2) > 13/5.

Proof. Note that the quantity inside of the square root of (2.17) is positive since the function 7%
is strictly decreasing for > 0. Denote A = 3/« for brevity. Consider

b(t) = A(t, \t)* — (t/a)?, t>0.

We have
Vi) = t A%t (L+N%t 2t
et —1 M1 (Nt _1 2
= o(t) + Ad(At) — (1 + Mo ((1+ N)t),
where ; ;
)= —— 4+ —.
¢( ) 6t _ 1 + Oéﬂ
It is elementary to check that ¢ is convex for ¢ > 0, and thus, ¢’ is strictly increasing. Moreover,
one can also verify that ¢/(0) = —1 + a—lﬂ < Osince a3 > 2, and ¢/(t) > 0 if ¢ is large. Hence,

there exists to > 0 such that ¢'(¢) < 01in (0, o) and ¢'(¢) > 0 in (o, 00). That is, ¢(t) is strictly
decreasing in (0, tg). Therefore, if 0 < (1 + )t < to, then

V(t) = o(t) + Ap(At) — (1 + N)p((1+ A)t) > 0.
If (1 4+ A\)t > to, since ¢’ is strictly increasing, we have

V(1) = ¢'(t)+ X2 (M) — (1 4+ )¢ (1 + \)t)
< H(T+ X))+ X2 (14 Nt) — (14 N2 (1 + \)t) < 0.

Hence, we have that V/(t) is positive when 0 < ¢t < 1170» and then is decreasing for ¢ > %
Since b/(t) — —oo as t — oo, then we know that there exists ¢ such that b'(t) > 0if ¢ € (0,¢)
and V/(t) < 0if ¢t € (t,00). That is, b(t) is strictly increasing when ¢ € (0, ¢) and b(¢) is strictly
decreasing when t € (f,00). Since b(0) = 0 and lim;_,~ b(t) = —oo, there exists a unique
c1 > 0 such that b(c;) = 0. This proves the existence and uniqueness of ¢1, ¢y > 0, which are
solutions to (2.16).

To prove (2.18), without loss of generality, we assume o < ( and thus ¢; < ¢3. Since the

function % is strictly decreasing, we observe that

c1 T 2c1 T
c% = a2A(c1,02) > a? (/ - dzx —/ - da:) .
o ev—1 o €'—1

2
2 - ]

— rca oz 2c1 g
0 e*—1 dl’—fq e*—1 dx

That is

—2 asc; — 0.

12



Therefore, if & > /2 + § for some § > 0, then ¢; > & for some ¢ > 0 depending only on §.

Moreover, for
c1 2c1
B(er) ::/ z dm—/ x dz,
0 et —1 1 er —1

d 261
2 B(ey) = .
deq (c1) el +1 >0

Therefore, B(c;) is increasing, and thus, for all c; > ¢; > ¢, we have

Cc 2¢
A(cr,c2) > \/B(er) > \// * dw—/ xx 1 dr =: A > 0.
0 ¢ € —

we have

et —1

Now we will show that min(cy, c2) > 13/5 if we suppose min(c, 3) > 4. Without loss of
generality, we assume o < 3. Hence, A = 3/« > 1. Since % is decreasing,

er—1
t 2t 2
T x t
b(t) > A(t, t)? — (¢ 2:/ d—/ dr — —
()2 A1~ /o) = [ Tqar— [7 T
t2 2t2 t $2€$ 2t .,L.Qex t2
= — dr — ——dr — —
et —1 th_1+/o (e® —1)2 . /t (e —1)2 >
12 2t2 t2
Z —

et —1 e2t—1 @2’

(535%)2 is decreasing
in z in the last inequality. From this, one can verify that if « > 4, then b(13/5) > 0. It is clear
that 5(0) = 0 and lim;_,_, b(t) = —oo. Moreover, we know from the proof of Lemma 2.4 that
b(t) (which is the same as the b(t) there) is strictly increasing in (0, ) and strictly decreasing in
(t,00) for some ¢ > 0. Therefore, we know that the unique solution ¢; of b(c;) = 0 satisfies that

(02 >)Cl > 13/5. OJ

where we used integration by parts in the second equality, and the fact that

By (2.6), we also can express

A(cr,e2)? =Lig(1 — e ) + Lig(1 — e~) — Lip(1 — e~ )
2

— % + Lig(e™7?) — Lig(e ™) — Lig(e ™)

—(c1+ca)log(l —e 1 72) +cplog(l — e ™) + colog(l —e™ ). (2.19)

Therefore,

2

% + Lig(e™® ) — Liy(e ') — Liy(e ™)

9 1—e 17 1—e 17 9
= A(er,c2)” + c1log <> + colog <> > A(eq, e2)”.

l1—e@ 1—e ¢

(2.20)

These two formulae (2.19) and (2.20) will be used later.

The next technical lemma will be used to estimate the error term in Section 3.2, which we
include here for convenience. For a complex number z, we denote Re(z) as the real part of z, and
Im(z) as the imaginary part of z.

13



LEMMA 2.5. Suppose min(«, ) > 4, and let c1, ca be as in Lemma 2.4. Define two functions:
ne(x) = Re(Liz(e™7®)) + x - Im(Lig(e~¢~'%)), (2.21)
1 2
H(z) = 1122\ 6 + Neytea () = Ney (T) = Ney () ) (2.22)
Then there exists a universal constant § > 0 such that
Y

1+=x

H(z) < H(0) —

5 Jforallz > 0.

Proof. For convenience, denote

2

F(x) = "o 4 Nertea (2) = ey (2) = ey ().

Then F'(0) = H(0). We are going to show there exists a universal constant 0 > 0 such that
F'(z) < 2F(0)z — 20z forallz > 0, (2.23)

from which it follows by integrating both sides that
2

H(x) < H(0) — 522 forall x > 0.
We have
2 0 —(C1+Cz)k‘
F(x) = % + kz_:l eT(cos(cl + co)kx — xsin(c; + @)kx)
o e—Clk o0 e—czk
_ Z % <cos(clkx) — zsin(cikz) > Z 12 (cos cokx) — acsm(czkx))
k=1 k=1
Therefore,
F'(z)
o0 6—(C1+62)k
= 2 ( — (c1 4+ c2)ksin(eq + e2)kx — sin(cq + ca)kx — (¢1 + c2)kx cos(cy + @)kx)
k=1
o efclk
+ Z 12 (clk: sin(cikz) — sin(c1kz) + cikz cos(clk:m))
k=1

cok sin(cokx) — sin(cokx) + cokx cos(@kx))

+
(]2
[
% &
Sl s
/N

k=1
. 21.2 X e~k 21,2
< Z k2 <(61 + c2)°k*x + 2(e1 + CQ)kgp) + Z 12 (clk: T+ QClkx)
- k=1
e
+ > o (k% + 2e0hka)
k=1
(Cl + 62)2 -
- x(M —2(c1 +c2)log(l —e (CI+C2))
2 :
* et — 1 — 20 log(l B 6_01) + ec2 — 1 — 2c¢o log(l —e 52)).
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Let

¢le) = ecc_ - — 2clog(1 — e ™) + 2Liz(e ).

Then ¢(0) = 72/3 and lim._,, ¢(c) = 0. Also, ( is strictly decreasing since

N
/ c e
= <o
)=
Therefore, there exists ¢ to be the unique solution of {(¢) = 11101(%2 _ Then we have
Fl'(x 2 ‘
i) —2F(0) < ((c1 + e2) + ((e1) +((e2) — % — 4Lig(e~(e1Fe2))
2
7
<30(e) - =
c@-T
2
— 2 (2.24)
3000

as long as min(cy, c3) > €.
Let us estimate the value of ¢. Notice that
0 —ck oo —ck —2c c
D ey e e e e e _ 4ec -3
Liz(e ); ¢ +§ 22~ Tl e T A _e)

Hence
2 4e€ — 3

C(e) < . —2clog(1—e_c)+m.

eC_

Using the above estimate, we can verify that ((13/5) < 11172/1000. Since ( is decreasing, we
have ¢ < 13/5.

Since we assume that min(«, 5) > 4, we know from Lemma 2.4 that min(cq,c2) > 13/5.
Therefore, min(cy, c2) > ¢, and thus, (2.24) holds. This proves Lemma 2.5. O

3 Proof of the main result

Now we will start to prove our main result.

Proof of Theorem 1. Since p,(N, M) = p,(M,N), without loss of generality we can assume
N < M. Recall

and also recall our assumption that min(«, 5) > 4. Let ¢1,c2 be the solutions of (2.16) with
A(cy, o) defined in (2.17). Set

A 1
v = 7(01’02) and wp =

\/ﬁ ngf .

wlm

15



Then N - v = ¢; and M - v = co. First, we observe from the definition of A(c1, c2) in (2.17) that

A(cy,e2) < 1// T dr < . 3.1
0 et —1

Secondly, since we have assumed that «,, 3 > 4, we know from Lemma 2.4 that there exist two
positive universal constants ¢ and A such that

min(ci,c2) >¢>0 and A(cp,c2) > A>0. (3.2)

These two universal lower bounds are important to prove the uniform estimate in the next subsec-
tion. Since we assumed that N < M at the beginning of this proof, it follows that ¢; < cs.
Recall the integral (2.8) that

1 4 ) )
pn(N, M) = 27T/ elog f(v+iw) gn(v+iw) g,
Lo 17 A ,
- / log S (v+iw) n(v+zw) dw + / elog f(’U-‘r’L’w)en(q)J,-zw) dw
2 T Sy
_|_i —Wwo €10g f(y+iw)en(v+iw) dw
2w
= L1+ 1+ Is. (3.3)

We will show that I is the main term, and both /5 and I3 are lower order terms.

3.1 Estimate the main term /.

Let z = v+ iw for —wy < w < wy. Since v = A(cy, co)n~'/? and wy = n=3/*+t</3_ by recalling

(3.2), we have min(N, M) - |z| > min(cq, c2) > ¢ > 0 and |w/v[ < |wo/v| = o(1). Then we can
apply Lemma 2.3 to obtain

log f(z) = % (62 + Lig(e #(VHM)y _ Liy(e=N) — Lig(eZM)>

_ ,—zN _ ,—zM
—llog <i> —%log (1=em ) =77 —log V27 + O(|2]).

2 1 — e—2(N+M)

In particular,

1 /x> . P "
log f(v) = - <7; + Lig(e VWHM)y _ Liy(e7*N) — Lig(e M)>
1 1 1. (1—eM(1 —e¥M)
-5 log (v) ~ 5 log [ oo (NEID) —logV2m 4+ O(v). (3.4)

16



Now we compare the above two terms,

log f(v + iw) — log f(v)
2 (1 1) (Lig(e_z(NJrM)) Lig(e_”(N+M))> <Lig(e_ZN ) Lig(e™N ))
+ — —_

z (%

E z v
Lio(e*M)  Lig(e™ M) 1 1 1 1. 1—e#N+M)
B ( ) g (e (5) e (D) ) + g los o

2 1—e N 2 °1_¢
=: J1+J2—J3—J4—H+K1—KQ—K3+O(U). 3.5

We are going to estimate each term on the right hand side of (3.5).
Let us calculate J; first. Since

we obtain
1 1 2 3
:_iw_“’,+o<“’g>, (3.6)
v

and thus,

Now let us calculate J3 in (3.5). Notice that J5 and Jy are in the same form as .J3, so they can
be estimated in the same way. Using the property of Spence’s function %Lig(z) = —% log(1—2)
for z € C\ [1,00), one has

gLig(e_“) =e"log(l —e “)e " =log(l —e™");
u

0? e 1

9 Lig(e™) = - :

ou? fa(e™") l—e v ev—1

Therefore, with noting that N - v = ¢y,

1 1 3
Lia(e ) = Lia(e ™) = iwN log(1 — ") = S ——w?N* + 0 (“ig) ,
€ — v

17



where in the last term O(-) we used that ¢; > ¢ > 0 independent of n. Thus
L12( zN) Lig(e_UN)

J3 =
v
1 ro1y,.,
= ; (Liafe _ZN) Liste™) + (£ = ol
(1w wi _ —ony 11 2 772 wp
= <— f—f—FO(U )>~<szlog(1—e )_EeUN—le +O(F>

2 3
LW w w . —
+ (_2’1)2 — ﬁ + O<v2>> L12(€ UN).

Since by our assumption N - v = ¢1, v = A(c1, ¢2) - n~ /2 and wo /v = o(1), it follows that

2 2 2
_wey pmay W w 01 o1y _ Wi e
Jso = i glog(l—e™) = o g+ log(1 —e™) — i 3Lia(e™)
w? w
—FLIQ(C Cl)+0(1)4>
, —c1log(1l —e™) + Lig(e™“)
= —ijwn- 5
A(Cl,CQ)
3/2 1 2 3
2 n —c : —c 1 Wy
—w? - —¢ilog(1 — e ) + Lis(e ™) + = o),
w A(01’02)3< c1log(l —e™') + Lig(e )—1—2601_1)4- <v4>

We estimate the other two terms J5 and Jy in the same way. Therefore

Ji+Jo—J3—Jy

71.2

A(Cl, 62)2 (E
—(c1 4 c2)log(l —e 1 72) +c1log(l —e ) 4 colog(1l — 6702)>
3/2 2
2 n m : —c1—c¢ : —c ; —c
—w" - m(@ + Lig(e™“'7%) — Lig(e™“") — Lia(e™*)
—(c1+ c2)log(l —e172) + ¢y log(l — e 1) + calog(l — e ?)
latal 1 4 1 4 )+o(wé).

2eatez — 1 2e0 —1 e —1 vt

= —jwn- + Lig(e747%) — Lig(e” ') — Lia(e” )

By recalling (2.19), we eventually get
Ji+Jo—J3—J4

3/2 2 2
_ 9 n L(c1+e)? 1 ¢ 1
- —wn-w? —— (A bl _ -
v A(cr, c2)? ( (er,e2)” + 2ecitez — 1 2e1 —1  2e2 —1
3
w,
Lo (2) . 3.7)
v

Now let us estimate H in (3.5). Since for n sufficiently large, |w/v| < 1/2, we have that
og (- o = |lo i —
& z & & v/~ Pt k
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and thus

H=0 (@) . (3.8)

v

Now let us estimate K1, Ko and K3 in (3.5). These three quantities are in the same form, so
we just show the details for K. Since

s, Cuy B
alog(l—e ) = =

2 U
Wlog(l—e ):—W,

we obtain

1— e—zN

2K2 = log m = log(l — C_UN_“UN) — log(l — e_UN)
1wN 1 eV 2 A2 wi

— - N?’+0(=2).
evN _ 1 + 2 (evN _ 1)2w + v3

Since N - v = ¢1, v = A(ey, ¢2) - n~ /2 and wy /v = o(1),

K2:0(@).

v
Similarly, K; = O(%2) fori = 1, 3 and thus,
Ki—Ko—K3=0 (@) . (3.9)
v
Plugging (3.7), (3.8) and (3.9) into (3.5), we arrive at

log f(v + iw) — log f(v)

3/2 2 2 2
= —jwn —w?- 14(:1,/02)3 (A(C1, c2)” + ;ifll—s——;ci)l N %eclcl_ 1 %eCQCQ_ 1)
+0 (“’;3) +0(v)+0(=2)
v v
= —iwn — %an?’/QS(cl, ) + O(n~ 14+, (3.10)
where for convenience we denoted
2 2 2
S(cr,e2) = M <2A(01,02)2 + ii;—;ci)l - 60161_ i 66202— 1) .

In obtaining the term of O(n~'/4*€) in (3.10), we used that A(c;, ¢2) is bounded from above and
below by two universal positive constants (see (3.1) and (3.2)).

We now show that S(cy, ¢2) is bounded from above and from below by two universal positive
constants. Recall that

Cc1 c1tc2
Aler, ) = / R / Tz
0 et —1 o e —1

19




By integration by parts (noticing that we assumed o < 3, so that ¢; < ¢3), we have

o 5 (14 ca)? 3 c3
L(CI,CQ) = 2A(Cl,62) + eciter _ | - el — 1 - ez _ |

_ /01 x2ex J /c1+62 x26x J

I G Y SR C s G0
c1 2 x 2cq 2 x _

2/ xezdaj—/ Lde =: B(e1).
o (e—1) o (e2=1)

as the function z2e® /(e — 1)? is strictly decreasing for x > 0 (which can be elementarily verified

by showing that its derivative is negative). Since

d ~ 2c2e¢

—B(¢c) = — >0,

de (c) (€€ +1)2

B(c) is increasing in ¢. Thus, continuing from (3.11) and using min(c;,cy) > € in (3.2), we
obtain

0 < B(€) < Bley) < L(ct, ¢2) < /Oo @1 dz < co. (3.12)
0

Using (3.1) and (3.2), we conclude that S(c1, o) = L(cy, ca)A(er, ca) ™ is bounded from above
and from below by two universal positive constants.
Using (3.10), we can estimate the term

I = 1 /w logf(v—i-zw) n(v+iw) dw

o
_ i /wo 610g f(v)fiwn7%w2n3/25(cl702)+O(n71/4+6)e”(v+iw) dw
2w
1 [wo
= exp(log f(v) + nv + O(n~/4F9)) . 2/ emzwin®/?S(erea) gy, (3.13)
T J—w
For the first term, since we have from (3.4) that
nl/2 2
log f(v) = m (6 + Lig(e”“*7“?) — Lig(e™ ') — Lig(eCQ))
1 Vn 1 (I—e1)(1—e*2)
—=1 — ) — =1 —1 2

it follows that
exp(log f(v) 4+ nv 4+ O(n~1/4€))

~ e—(ater)
1 m\/ 1— e(ate _eﬁx(q,cg)(l+0(n—1/4+6)), (3.14)

ni/4 1—ea)(1—e )
where
K(c1,c) = Alcy, ) + (= + Lig(e™(e17¢2)) — Lig(e™®) — Lig(e ™) | .
’ ’ A(Cl, 62) 6

20



For the other term, by setting t = +/.S(c1, c2)n%/* - w, we get

S , €/3
/wo e*%w2n3/25(01702) dw — 1 / (Cl C2)TL 67t2/2 dt
—wo S(c1, ca)n®/* J -\ /S(er cayne/3

S S /OO e 2t — 2/00 e U2t
VS(c, 62)n3/4 —oo S(c1,c2)ne/3

1 2 _ S(e1,¢9) 2¢/3
=— ([ V2r+ O —=— 2 "
V/S(c1, co)nd/4 < " <\/S(cl,02)n€/3e )
V21 —1/4+¢
~ /S(er, ca)nd/t (1 +0(n )) ’ G-1)

where in the last equality we used the fact that S(cy, c2) bounded from above and from below by
two universal positive constants.
Finally, putting (3.13), (3.14) and (3.15) together, we have

/A _ o—(c1t+c2) VnK(c1,c2)
I = 1 61702 \/ 1 —e7laare € (1+O(n_1/4+€))

01762 1—e Cl 1—6762) . n
A 1 — e—(c1te2) VK (c1,c2)
- (c1, c2)” c 7 ¢ (14 O(n~Y49)), (3.16)
2m\/L(c1,¢2) (1—e)(1—e2) n
where
1 772 . —(c1+c2) . _ . _
K(Cl,CQ):A(Cl,C2>+m F—FLIQ(@ ate2)) _ Lig(e=®) — Lig(e ™) ] ;
(c1 + c2)? i 3

_ 2 _ _
L(cl’ 02) - 2A(cl’ 62) + ecitea _ 1 el — 1 e2 —1°

We know from (3.1), (3.2) and (3.12) that A(cy, ¢2) and L(cq, ¢2) are bounded from above and
from below by two universal positive constants. Since min(cj, ca) > ¢ > 0, we have

_ p—(c1+c2)
V1 —2c<\/ Ll <1 (3.17)

l—ea)(l—e2) " 1—e°

Using (2.20) and Lis(1) = %, we have

7[.2

3A(Cl, CQ) ’

This implies that K (c;, ¢2) is also bounded from above and from below by two universal positive
constants.

Hence, all of A(cy,¢2), L(1,¢2), K(c2,¢2) and \/ - e,cl;zllﬂj,cz) in (3.16) are bounded from
above and from below by two universal positive constants. To prove that I> and I3 in (3.3) are
lower order terms compared to 7, it suffices to show that

Dl + 15| = o (exp{\/ﬁf(%@)}) .

ni ¢

2A(01,62) < K(Cl,02> < A(Cl,CQ) + (3.18)

We will prove the above estimate in the next subsection.
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3.2 Estimate the remainder terms /, and /s.

It is enough to estimate [ in (3.3). The proof for I3 is identical. Let wy = C - v where C' is
a universally large constant to be fixed in Step 2 below (one will see later that C' = 207 would
suffice). We further split I5 into two parts.

I = L f(v 4+ iw)e™ V) dy
27 S
S - Fv + iw)e™ V) dy 4 L /7r Fv + iw)e™ V) duy
27 P
= I+ 12. (3.19)

Step 1. Estimate the term Ié. Note that for z = v + 1w with wy < w < wj, the hypothesis of
Lemma 2.3 is satisfied. Thus

2

log f(z) = % (6 + Lig(e #NFM) _ Lig(e7*N) — Lig(e_ZM)>

1 1\ 1. (1—e V)1 —e=M)
—710g <Z> — ilog 1_ e—Z(N+M) + O(l)

and

1] =

/ logf (v+iw)+n(v+iw) dw‘

1—e z(N+M)
0(1)
‘6 w \/> \/ —e zN —e zM)

- exp { — + Liy( Z(N+M)) — Lig(e_ZN) — Lig(e_ZM)> +nv + inw} dw’

|1 _ e—z(N—i—M)‘

< 1/
~ \/|1 e #N| |1 — e=2M|

- exp {Re ( 5 + Lig(e *NFTM)y _ Liy(e7*N) — Lig(e*ZM)> + m)} dw.

Since |z| = O(v), and

C1

22 ’1—€_ZN’:|1—€_’UN_“UN‘ 21_|€—UN—in‘:1_6—’01\7:1_6— ,

we conclude that (recalling v = A(cy, c2)n™1/2),

w1 1 2
15| Svv | exp{Re= (% + Lig(e *WHM)) — Lig(e=*N) — Lig(e7*M)) + no} dw
wo z
w1 1 2
= /v eVrElene) / exp {Ref (% + Lig(e#WVH+M)y _ Liy(e=#N) — Lig(ef‘ZM))
wo z

Len? o, —v e
_;(%+L12( (NHM) — Lig(e*N) — Lig(e ™)) } duw. (3.20)
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Let us denote

2
1 < + Lig(e " NFM) _ Lig(e7"N) — Li2(e‘”M)> . (3.21)

Re(D) < —— - T (3.22)

for some universal constant 7' > 0, where Re(D) is the real part of D.

We first get
Li2(€*017in) i
Re <z = Re<02 n w2L12(€ c1—iw ))
1 ‘ |
= U2 n UJ2 {URC(LIQ(G_cl—sz)) + wIm(Lig(e_cl_“UN))}
) —ci—icly w . W
T 2wl {Re(L12(6 aTray)) + v Im(Lig(e™ 7" ))}
= l . #{Re(LiQ(e—q—icl%)) + w -Im(LiQ(e_cl_icl%))}
v 14 (w/v)? . '
Therefore,

72 w w w
R GUMORIORE0)

- <7§ + Ner+¢2(0) = 7, (0) — 7702(0))

where 7). is defined in (2.21) and H is defined in (2.22). By Lemma 2.5, we have for 0 < w/v < C

that 5 ) )
w w w
‘R D:H(—)—H L
v-Re(D) v (0) = 1+ C2 92 v2
This proves (3.22).
Therefore, continuing from (3.20) with the help of (3.22), we have that

w1
Bl Vo Ve [ op(—u?T /o) du

wo

1 [

<SVou- e‘/ﬁK(q’cz)/ w exp{—w?T/v3}dw
wo wo

7

Alcr,e2)? Tn'
< el K T Al 3
S opait exp {\/ﬁ (Cl, 02) A(cl, 02)3
. (exp{\/ﬁf((chcz)}) ' (3.23)
na ¢

23



This finishes the estimate of I}, which is indeed a lower order term compared to I;.
Step 2. Estimate the term IY). Recall that

log () = Y0 105

k=1

esz-N) (1 _ esz-M)

ekz — 1

and -
I’ = 1/ elogf(v+iw)+n(v+iw) dw
2 or )
where w; = C' - v with C being a large constant (to be determined below).
First, note that \ek(””“’) -1 > ek — 1> ko. Secondly, we have

w1

le* —1] = [e"T™ —1| = \/(e” cosw — 1)2 + 2V sin? w

= \/(e” — 1)2 + 4ev sin?(w/2),
and thus,
et — 1| > 2sin(w/2) > 2w/7

which follows from the inequality that sin § > %«9 for0 <6 <m/2.
It follows that

|log f(v +iw)|
efk(eriw)N)(l _ efk(eriw)M)

B ‘il(l—
o L k(v+iw)—1
k:lk eh(v+i)

27 N 1 i (14 e7ker) (1 4 e—hez)

Cv v k2

IN

k=2

2 1= (14 e k1) (1 4 eFe2)
To v 2

1

IN

——(14+e )1 +e?)
k=1 v
or  w?

c 6

v

We claim that for C' sufficiently large, we have

4 2
g + % + Lis(e (+¢2)) 4 Liy(e ) + Lin(e™2) — (1 + e )(1 + e~2)
2
< % 4 Lig(e(@+¢2)) — Liy(e™1) — Lig(e~2).

Suppose the above inequality (3.25) holds. Then continuing from (3.24), we have

|]§/’ < 1 /ﬂ e|logf(v+i'w)|+n’v dw

o /.
< i " eV(K(c1,e2)=2m/C) g0 o (eXp{\/ﬁf((clv C2)}> ‘
27T w1 nz*&‘
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(3.24)

= - ( + — + Lig(e~ (@) 4 Lig(e™) + Lig(e™2) — (1 + e “)(1 + e—cz)) :

(3.25)

(3.26)



Now we are left to prove (3.25), which is equivalent to

—c1 —ca
%”+L12( o) 4 Lig(e—e2) < L )2(”6 ).

Since we assume that min(«, 5) > 4, we know from Lemma 2.4 that min(c;, c2) > 13/5 > 2.

Hence,

e 4 1 1 1
e B 1
Li(e )Sl—e_cl_ecl—1§62—1<5’

and similarly Liz(e~“2) < 1/5. Hence, we only need to choose C' large so that

2 2
<

C

(@)
N |

Therefore, C' = 207 would suffice.
From (3.19), (3.23) and (3.26), we obtained that

K
|I2‘ S o (exp{\/ﬁf) (617 62)}) . (327)
na~¢
Since I3 is in the same form as [, defined in (3.3), one can show similarly that
K
3] <o (exp{\/i (fl’@)}) (3.28)
na-

3.3 Asymptotic formula
Combining (3.3), (3.16), (3.27) and (3.28), we obtain

A(er, ) 1 — e—(c1te2) eVnK(ci,c2) i

n N M ) N 1 / —+€ 329

Pt M) = omy/L(ct,ca) || (L—e)(1—e) o (+O(n )),< )
where

1 m? : —(c1+c . —c . —c
K(ChCZ) = A(Cl,CQ) + m (6 + L12(€ (a1 + 2)) _ L12(€ 1) . L12(€ 2)) :

2 2 9
L(C1, ) = 2A(cy, 62)2 + (c1+¢2) a6

eartez -1 ea1 —1  e2—1

By recalling (2.17) and (3.11), we have the explicit integral representation for A(cj,cs) and

L(cy,e2):
c1tc2
A(cq, o) \/ d:v—/ ac 1 dzx,
c2 -

-1
c1 c1+c2
L(cy,c2) = / %d:b —/ %dl‘.
o (e”—1) e (eT—1)

Therefore, all the terms in the equation (3.29) are explicit.
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The last step is to express the asymptotic formula in terms of «, 3 instead of ¢y, c2. Recall that
¢1 = aA(eq,c2) and co = BA(cq, c2). We denote g(«, ) = A(cq,c2) > 0 and g(«, ) satisfies

ag(a,p) (a+B)g(a,B)
92(a,ﬂ):/ x:U d:v—/ mx dx
0 et —1 Bg(a,B) e” —1

or equivalently,
¢%(a, B) = Lig(1 — e~ 9@y 4 Lig(1 — e P9y — Liy(1 — e~ (@tFa(8))y,

The uniqueness and existence of g(«, 3) > 0 is guaranteed by Lemma 2.4. Then by recalling
(3.29), we have

Pn(N, M)

1 — e—(a+B)g(e,B) eVnK(a,B)

271'\/L7\/ 1—eag(@P)(1 — e Bol@h))  p

(14 0(n~Y4F9),  (3.30)

2
K(a,B) = g(a, B) + 1 <7T + Lig(e~(@+B9(28)) _ j,(e=09(@B)y _ Lig(eﬁg(a,ﬂ))>
g

_ 2 (CX—F/B)QQQ(O[,ﬁ) OZng(OZ,B) /BQQQ(Q,B)
Lo B) =20 B) + ~ifgad) -1 sosled) — 1 posed) — 1

Since min(a, 8) > 4, it follows from Lemma 2.4 that min(c1, c2) > 13/5. By (3.1), (3.2),
(3.12), (3.17) and (3.18), we know all of A(cy, cz), L(1, c2), K (ca, 2 and\/ Le(ted) 4,

l—e~c1)(1—e~¢2)
(3.29) are bounded from above and from below by two universal positive constants. Hence all the

functions g(«, ), L(a, 8), K(«, ) and \/(1 — 1049?04 ;a;(ﬁ)g(: 2(&,5)) in (3.30) are bounded from

above and from below by two universal positive constants. The error term O(n~/41€) is also
uniform in «, 5 € [4, 00]. O
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