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Abstract
We derive an asymptotic formula for pn(N,M), the number of partitions of integer n with
part size at most N and length at most M . We consider both N and M are comparable to√
n. This is an extension of the classical Hardy-Ramanujan formula and Szekeres’ formula.

The proof relies on the saddle point method.

1 Introduction

A partition of integer n is a sequence of positive integers λ1 ≥ · · · ≥ λk > 0 satisfying

k∑
i=1

λi = n,

where k is the length and the λi’s are the parts of the partition. Let pn be the number of all
partitions of n. In a celebrated paper [7], Hardy and Ramanujan proved the asymptotic formula

pn ∼
1

4
√

3n
exp

(√
2n

3
π

)
. (1.1)

For two positive sequences {an} and {bn}, we use an ∼ bn if limn→∞ an/bn = 1.
Let pn(N) be the number of partitions of n with part size at most N . Note that pn(n) =

pn. Szekeres [18, 19] obtained the asymptotic formulas for pn(N) as n tends to infinity, using
substantially different approaches for two distinct though slightly overlapping ranges of N . In
particular, Szekeres’ formula holds if α := N/

√
n ≥ C > 0. The formula was reproduced later

by Canfield [3] using recursive equations for pn(N) and Taylor expansion. It is observed in [3]
that Szekeres’ formula could be combined into a single form

pn(α
√
n) =

ρ(α) exp
[(

2ρ(α)− α log(1− e−αρ(α))
)√

n
]

23/2πn

√
1−

(
α2

2 + 1
)
e−αρ(α)

(
1 +O

(
n−1/6+ε

))
(1.2)
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as n→∞, where ρ(α) > 0 is the unique solution to the implicit equation

ρ(α)2 = Li2(1− e−αρ(α)) (1.3)

and Li2 is Spence’s function, or dilogarithm, defined for complex number |z| < 1 as

Li2(z) =

∞∑
k=1

zk

k2
.

Since ρ(α) is an increasing function and satisfies

ρ(0) = 0 and lim
α→∞

ρ(α) =
π√
6
,

it can be checked that when α → ∞, the right side of (1.2) converges to the right side of (1.1).
Several years later, Romik [15] provided another proof of (1.2) using probabilistic methods.

In this paper, we focus on pn(N,M), the number of partitions of n with part size at most N
and length at most M . The pn(N,M) for n = 0, . . . , NM are also called the coefficients of the
q-binomial coefficients or Gaussian binomial coefficients. In [16, Theorem 2.4], the asymptotic
behavior of pn(N,M) has been investigated assuming M is fixed and N gets arbitrarily large.
Very recently, Richmond [14] derived the asymptotic formula for pn(N,M) when both N and
M are close to their expected values

√
6n
π log(

√
6n
π ) (see [4] for the distributions of the length and

largest part of a uniform integer partition). When n is close to NM/2, an asymptotic formula for
pn(N,M) was obtained before by Takács [20] . More precisely, whenever N → ∞, M → ∞,
|N −M | = O(

√
M +N) and |n − NM/2| = O(

√
NM(N +M)), it was shown in [20] (see

also [1]) that

pn(N,M) =

(
N +M

N

)√
6

πNM(N +M + 1)
exp

(
− 6(n−NM/2)2

NM(N +M + 1)

)
(1 + o(1)) .

(1.4)

In this paper, we aim to complement this result by deriving asymptotic formulas for pn(N,M)
when n is around NM/τ with τ 6= 2. We prove such formulas by imposing some extra require-
ment on τ (see Theorem 1 and discussion in the end of Section 1.1). Our motivation to derive such
formulas lies in studying the limiting distribution of a partition chosen uniformly from the set of
restricted partitions Pn(N), that is, partitions of n with part size at most N , for the entire range
1 ≤ N ≤ n. Currently, the uniform distributions on Pn(n) (see [4, 6, 12]), Pn(N) for N fixed
integer (see [8]) and Pn(N) for N = o(n1/3) (see [9]) have been studied. We believe the asymp-
totic formula of pn(N,M) plays an important role in understanding the uniform distribution on
Pn(N) for other values of N . This will be explored in future research.

1.1 Main result

For positive integers n,M,N , we denote

α =
N√
n

and β =
M√
n
.
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THEOREM 1. Let ε ∈ (0, 1/8) be given. Then uniformly for N ≥ 4
√
n and M ≥ 4

√
n, we have,

as n→∞, that

pn(N,M) =
g(α, β)2

2π
√
L(α, β)

√
1− e−(α+β)g(α,β)

(1− e−αg(α,β))(1− e−βg(α,β))
· e
√
nK(α,β)

n

(
1 +O(n−1/4+ε)

)
,

where g(α, β) > 0 is the unique solution to the implicit equation

g2(α, β) = Li2(1− e−αg(α,β)) + Li2(1− e−βg(α,β))− Li2(1− e−(α+β)g(α,β)),

and

L(α, β) = 2g2(α, β) +
(α+ β)2g2(α, β)

e(α+β)g(α,β) − 1
− α2g2(α, β)

eαg(α,β) − 1
− β2g2(α, β)

eαg(α,β) − 1
,

K(α, β) = g(α, β) +
1

g(α, β)

(π2

6
+ Li2(e−(α+β)g(α,β))− Li2(e−αg(α,β))− Li2(e−βg(α,β))

)
.

A few remarks regarding Theorem 1 are in order.

REMARK 1.1. The uniqueness and existence of g(α, β) > 0 is guaranteed by Lemma 2.4. .

REMARK 1.2. All of g(α, β), L(α, β), K(α, β) and
√

1−e−(α+β)g(α,β)

(1−e−αg(α,β))(1−e−βg(α,β)) in pn(N,M) in
Theorem 1 are bounded from above and from below by two universal positive constants for all
α, β ∈ [4,∞]. The error term O(n−1/4+ε) is also uniform in α, β ∈ [4,∞].

REMARK 1.3. If we do not put restrictions on either the part size or the length of the partition,
then either α or β is equal to infinity in our setting, respectively. In this case, the asymptotic
formula discovered in Theorem 1 is identical to the Szekeres’ formula (1.2).

Let us assume β = ∞ (by (2.3) the same will apply to the case α = ∞). We first notice that
g(α,∞) = ρ(α), where ρ(α) is the one in (1.3), and secondly,

K(α,∞) = ρ(α) +
1

ρ(α)

(
π2

6
− Li2(e−αρ(α))

)
= ρ(α) +

1

ρ(α)

[
Li2(1− e−αρ(α))− αρ(α) log(1− e−αρ(α))

]
= 2ρ(α)− α log(1− e−αρ(α)),

where we use (2.6) in the second identity. Also, it is easy to check that

L(α,∞) = 2ρ2(α)

[
1− α2

2(eαρ(α) − 1)

]
.

Therefore, by plugging these into pn(N,M) in Theorem 1, we will have (1.2).

We derive the asymptotic formula for pn(α
√
n, β
√
n) in Theorem 1 assuming α and β are

greater than 4. Our proof uses the saddle point method; see [11, Section 12] or [5, Chapter
8] for a detailed introduction to this method. For the case when α, β are both small, we could
combine Theorem 1 and pn(N,M) = pMN−n(M,N) (see (2.4)) to derive the formula, since both
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M/
√
MN − n and N/

√
MN − n will be large. For instance, this would apply if max(α, β) <√

16/15.
Finally, we conjecture Theorem 1 holds for arbitrary α, β > 0 as long as αβ = NM/n > 2.

For the remaining case 1 < αβ < 2, we can apply the formula for pMN−n(M,N) = pn(N,M)
since NM/(NM − n) = αβ/(αβ − 1) > 2. Therefore, combining (1.4) with Theorem 1, the
asymptotic formula for pn(N,M) is clear for arbitraryN/

√
n ∈ (0,+∞] andM/

√
n ∈ (0,+∞].

The stronger assumption min(α, β) ≥ 4 in Theorem 1 appears to be only a technical condition
(see Lemma 2.5) and is used to control the O(n−1/4+ε) error term in the formula. It could be
pushed to, say, min(α, β) ≥ 2.5 with advanced help of Maple. We did not try to optimize the
lower bound of min(α, β).

The paper is organized as follows. In Section 2, we will introduce some background, and
set up our calculation of obtaining the asymptotic formula in Theorem 1. Some analytic lemmas,
which will be used later, are also included. In Section 3, we will carry out the detailed calculations.
We will first derive the main term, and estimate the error term afterwards.

We note that shortly after a preprint version of this paper appeared on the arXiv, another
preprint [10] appeared on the arXiv which derives an asymptotic formula for pn(N,M) using a
probabilistic approach. In our notations, they obtained an asymptotic formula for pn(N,M) when
αβ ≥ 2 and assuming (α, β) is in an arbitrarily fixed compact set K ⊂ {(x, y) ∈ R2 | x > 0, y >
0}, with an error bound o(1) depending on the compact set K.

Notations: We use standard asymptotic notations o,O as n tends to infinity. We denote a . b if
there is a universal positive constant C such that a ≤ Cb.

Acknowledgement: We would like to thank the referee for many helpful suggestions to improve
the exposition of the paper.

2 Preliminaries

In this section, we will first recall the generating function of pn(N,M) and Spence’s functions, and
show some of their properties that will be used. We will see a connection between the generating
function of pn(N,M) and Spence’s functions in Lemma 2.3. And then, we express pn(N,M) as
an integral using Cauchy’s integral formula, and it is the integral that we are going to estimate. In
the end of this section, we prepare some lemmas for the detailed proof of Theorem 1 in Section 3.
The usage of each lemma is explained before each of their statements.

2.1 Background materials

We begin with some basic properties of pn(N,M); see [2, Chapter 3] for a comprehensive intro-
duction. Note that pn(N,M) = 0 if n > M × N and pn(N,M) = 1 if n = M × N . Since
pn(N,M)− pn(N,M − 1) counts the number of partitions of n with length exactly M and part
size at most N , that is 1 ≤ λi ≤ N for 1 ≤ i ≤M and

∑M
i=1 λi = n, by considering λ̃i = λi−1,

it follows easily that

pn(N,M)− pn(N,M − 1) = pn−M (N − 1,M). (2.1)
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Denote G(N,M ; q) the generating function of pn(N,M) for n ≥ 0. Thus

G(N,M ; q) =
∑
n≥0

pn(N,M)qn =
MN∑
n=0

pn(N,M)qn.

The generating function G(N,M ; q) has an explicit expression and is usually referred to as
the Gaussian polynomial. The following lemma can be found at [2, Theorem 3.1]. We include the
proof for the readers’ convenience.

LEMMA 2.1. For M,N ≥ 0,

G(N,M ; q) =

∏N+M
j=1 (1− qj)∏N

j=1(1− qj)
∏M
j=1(1− qj)

=

∏N+M
j=M+1(1− qj)∏N
j=1(1− qj)

. (2.2)

Proof. It follows from (2.1) that

G(N,M ; q) = G(N,M − 1; q) + qM ·G(N − 1,M ; q).

Denote the RHS of (2.2) by G̃(N,M ; q). By direct calculation, we see that

G̃(N,M ; q) =

∏N+M−1
j=1 (1− qj)∏N

j=1(1− qj)
∏M−1
j=1 (1− qj)

· 1− qN+M

1− qM

= G̃(N,M − 1; q) · 1− qM + qM (1− qN )

1− qM

= G̃(N,M − 1; q) + qM · G̃(N − 1,M ; q).

Besides, it is easy to check that G(N,M ; q) and G̃(N,M ; q) satisfy the same initial conditions

G(N, 0; q) = G(0,M ; q) = 1;

G̃(N, 0; q) = G̃(0,M ; q) = 1.

Therefore, G(N,M ; q) = G̃(N,M ; q).

The following properties of pn(N,M) can be verified easily from the Ferrers diagram of
partitions. We also refer to [2, Theorem 3.10] for a proof.

LEMMA 2.2.

pn(N,M) = pn(M,N); (2.3)

pn(N,M) = pMN−n(M,N). (2.4)

It was first proved by Sylvester [17] that pn(N,M) is unimodal and

max
1≤n≤NM

pn(N,M) = p[ 1
2
NM ](N,M). (2.5)
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Now let us recall Spence’s function, or dilogarithm, which is defined for complex numbers
|z| < 1 as

Li2(z) =
∞∑
k=1

zk

k2
.

It has an analytic continuation for z ∈ C \ [1,∞) given by

Li2(z) = −
∫ z

0

log(1− u)

u
du, or equivalently Li2(1− z) =

∫ z

1

log u

1− u
du,

where log is the principal branch of the logarithm function. Li2(z) can be continuously extended
to z = 1, and Li2(1) =

∑∞
k=1

1
k2

= π2/6. Note that by a change of variable s = − log(t), we
have

Li2(1− v) =

∫ v

1

log t

1− t
dt =

∫ log(1/v)

0

s

es − 1
ds.

Equivalently, we have for x > 0,∫ x

0

t

et − 1
dt = Li2(1− e−x) =

π2

6
+ x · log(1− e−x)− Li2(e−x), (2.6)

where the last identity follows from the property that

Li2(z) + Li2(1− z) = lim
δ→0+

(
−
∫ 1−δ

0

log(1− u)

u
du−

∫ z

1−δ

log(1− u)

u
du+

∫ z

1−δ

log u

1− u
du

)
=
π2

6
− lim
δ→0+

∫ z

1−δ
d
(

log(1− u) log u
)

=
π2

6
− log(z) · log(1− z).

2.2 Setting up of the calculation

By Cauchy’s integral formula,

pn(N,M) =
1

2πi

∫
|z|=r

G(N,M ; z)

zn+1
dz

for any 0 < r < 1. We substitute z = e−(v+iw) and for convenience, denote

f(v + iw) = fN,M (v + iw) = G(N,M ; e−(v+iw)) =

∏N+M
j=M+1(1− e−j(v+iw))∏N
j=1(1− e−j(v+iw))

. (2.7)

Therefore,

pn(N,M) =
1

2π

∫ π

−π
f(v + iw)en(v+iw) dw =

1

2π

∫ π

−π
elog f(v+iw)en(v+iw) dw (2.8)
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for every v > 0. In the end, for our purpose, we will choose v = c · n1/2 for some constant c > 0.
In Section 3, we will show that the main term in the above integral is

1

2π

∫ w0

−w0

elog f(v+iw)en(v+iw) dw (2.9)

with w0 = n−3/4+ε/3, and we will prove that what is left in the integral is a lower order term.

2.3 Supporting lemmas

To estimate (2.9), we shall first analyze the function log f(z).

LEMMA 2.3. Assume z = v + iw with v > 0, |z| < 1 and assume z stays within some angle in
the right half plane, that is, v/|z| = Re(z)/|z| ≥ λ for some λ > 0. Recall f(z) in (2.7). Then
for |z| ≥ c̄

min(M,N) with some c̄ > 0, we have

log f(z) =
1

z

(
π2

6
+ Li2(e−z(N+M))− Li2(e−zN )− Li2(e−zM )

)
−1

2
log

(
1

z

)
− 1

2
log

(1− e−zN )(1− e−zM )

1− e−z(N+M)
− log

√
2π +O(|z|),

where log is the principal branch of the logarithm function.

Proof. Since

log f(z) =
M+N∑
j=M+1

log(1− e−jz)−
N∑
j=1

log(1− e−jz),

by Taylor expansion,

log f(z) = −
M+N∑
j=M+1

∞∑
k=1

e−jkz

k
+

N∑
j=1

∞∑
k=1

e−jkz

k

=
∞∑
k=1

1

k

 N∑
j=1

e−kz·j −
M+N∑
j=M+1

e−kz·j


=

∞∑
k=1

1

k

e−kz(1− e−kz·N )(1− e−kz·M )

1− e−kz

= z ·
∞∑
k=1

1

kz

(1− e−kz·N )(1− e−kz·M )

ekz − 1
.

Now we compare log f(z) with another summation.

log f(z)− z ·
∞∑
k=1

(1− e−kz·N )(1− e−kz·M )

(
1

k2z2
− e−kz

2kz

)

= z ·
∞∑
k=1

(1− e−kz·N )(1− e−kz·M )

(
1

kz(ekz − 1)
− 1

k2z2
+
e−kz

2kz

)
.
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Define ψ(z) = ψ1(z) · ψ2(z) where

ψ1(z) = (1− e−Nz)(1− e−Mz);

ψ2(z) =
1

z(ez − 1)
− 1

z2
+
e−z

2z
.

It is easy to verify that the Laurent expansion of ψ2(z) is equal to − 5
12 + λ(z) where λ(z) is

analytic and λ(0) = 0. Thus ψ2(z) and ψ(z) are analytic in the considered region.
Now we can express

log f(z)− z ·
∞∑
k=1

(1− e−kz·N )(1− e−kz·M )

(
1

k2z2
− e−kz

2kz

)
=
∞∑
k=1

zψ(kz). (2.10)

Let us compute the summation on the RHS of (2.10). It is natural to use an integral to approximate
the summation and we control the difference. Denote γ the ray starting from origin and passing
through z. It is clear the integral

∫
γ ψ(u) du is convergent. We are going to show that∣∣∣∣∣

∞∑
k=1

zψ(kz)−
∫
γ
ψ(u) du

∣∣∣∣∣ = O(|z|). (2.11)

Let γk be the line segment on γ from the point (k − 1)z to the point kz for k ≥ 1. Therefore, we
have∣∣∣∣∣
∞∑
k=1

zψ(kz)−
∫
γ
ψ(u) du

∣∣∣∣∣ ≤
∣∣∣∣zψ(z)−

∫
γ1

ψ(u) du

∣∣∣∣+

∣∣∣∣∣
∞∑
k=2

(
zψ(kz)−

∫
γk

ψ(u) du

)∣∣∣∣∣ .
Since ψ(z) is analytic at z = 0, we estimate the first term by∣∣∣∣zψ(z)−

∫
γ1

ψ(u) du

∣∣∣∣ = O(|z|).

For the other term, by integration by parts, we have∫
γk

ψ(u) du = kzψ(kz)− (k − 1)zψ((k − 1)z)−
∫
γk

uψ′(u) du

= zψ(kz) +

∫
γk

(
(k − 1)z − u

)
ψ′(u) du.

Thus∣∣∣∣zψ(kz)−
∫
γk

ψ(u) du

∣∣∣∣ =

∣∣∣∣∫
γk

(
(k − 1)z − u

)
ψ′(u) du

∣∣∣∣
≤ |z|max

u∈γk
(|u− (k − 1)z| · |ψ′(u)|)

≤ |z|2 max
u∈γk
|ψ′(u)| ≤ |z|2 max

u∈γk
(|ψ′1(u)ψ2(u)|+ |ψ1(u)ψ′2(u)|).
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Since |ψ1(u)| and |ψ2(u)| are universally bounded on γk for k ≥ 2, to show (2.11), it is enough
to show that for i = 1, 2,

|z|2 ·
∞∑
k=2

max
u∈γk
|ψ′i(u)| = O(|z|). (2.12)

In the below we will first prove (2.12) for ψ2, and then for ψ1.
Note that

ψ′2(u) = − 1

u2(eu − 1)
− 1

u(eu − 1)
− 1

u2(eu − 1)2
+

2

u3
− 1

ueu
− 1

u2eu
.

Recall v/|z| = Re(z)/|z| ≥ λ. Since |ψ′2(u)| is analytic and thus bounded for u ∈ γk where
2 ≤ k ≤ 1/(λ|z|) + 1, it follows that

|z|2 ·
∑

2≤k≤1/λ|z|+1

max
u∈γk
|ψ′2(u)| = O

(
|z|2 · 1

|z|

)
= O(|z|).

For k > 1/λ|z| + 1, we have e(k−1)v > e(k−1)λ|z| > e and thus e(k−1)v − 1 ≥ e(k−1)v/2.
Therefore,

|z|2 ·
∑

k>1/λ|z|+1

max
u∈γk
|ψ′2(u)|

≤ 2|z|2 ·
∑

k>1/λ|z|+1

max
u∈γk

1

|u|2|eu − 1|
+ |z|2 ·

∑
k>1/λ|z|+1

max
u∈γk

1

|u|2|eu − 1|2

+4|z|2 ·
∑

k>1/λ|z|+1

max
u∈γk

1

|u|3

≤ 6|z|2 ·
∑

k>1/λ|z|+1

1

(k − 1)2|z|2e(k−1)v
+ 4|z|2 ·

∑
k>λ|z|+1

1

(k − 1)3|z|3

≤
∑

k>1/λ|z|

6

ekv
+

4

|z|
∑

k>1/λ|z|

1

k3
= O(|z|),

where the last inequality follows from the estimates

∑
k>1/λ|z|

1

ekv
≤
∞∑
k=0

1

ekv
=

1

1− e−v
= O

(
1

v

)
= O

(
1

|z|

)
;

∑
k>1/λ|z|

1

k3
≤
∫ ∞

1/λ|z|

1

x3
dx = O(|z|2).

Hence, we proved (2.12) for ψ2.
Now, let us prove (2.12) for ψ1. Since minu∈γk |eNu| = minu∈γk e

N ·Re(u) ≥ e(k−1)N ·Re(z) =

9



e(k−1)Nv, we obtain

|z|2 ·
∞∑
k=2

max
u∈γk
|ψ′1(u)| = |z|2 ·

∞∑
k=2

max
u∈γk

(
N
|1− e−Mu|
|eNu|

+M
|1− e−Nu|
|eMu|

)

≤ 2|z|2 ·
∞∑
k=2

(
N

eNv(k−1)
+

M

eMv(k−1)

)
≤ 2|z|

λ
·
(
Nv · e−vN

1− e−vN
+
Mv · e−vM

1− e−vM

)
= O(|z|)

by the assumption |z| ≤ v/λ, where we used the fact that the function x
ex−1 is bounded on (0,∞).

This finishes the proof of (2.12). So, (2.11) is proved.
Since ψ(u) is analytic in the considered region, by Cauchy integral theorem, it is standard to

show that ∫
γ
ψ(u) du =

∫ ∞
0

ψ(x) dx.

Combining (2.11) and (2.10), we obtain

log f(z) = z ·
∞∑
k=1

(1− e−kz·N )(1− e−kz·M )

(
1

k2z2
− e−kz

2kz

)
+

∫ ∞
0

ψ(x) dx+O(|z|). (2.13)

It remains to estimate the first two terms on the RHS of (2.13).
We split the first term into two parts,

z ·
∞∑
k=1

(1− e−kz·N )(1− e−kz·M )

(
1

k2z2
− e−kz

2kz

)

=
1

z

∞∑
k=1

(1− e−kz·N )(1− e−kz·M )

k2
− 1

2

∞∑
k=1

e−kz(1− e−kz·N )(1− e−kz·M )

k
.

By the definition of Spence’s function, we have

1

z

∞∑
k=1

(1− e−kz·N )(1− e−kz·M )

k2
=

1

z

∞∑
k=1

(
1

k2
− e−k·zN

k2
− e−k·zM

k2
+
e−k·z(N+M)

k2

)

=
1

z

(
π2

6
+ Li2(e−z(N+M))− Li2(e−zN )− Li2(e−zM )

)
.

Since
∑∞

k=1 e
−k·z/k = − log(1− e−z), we have

1

2

∞∑
k=1

e−kz(1− e−kz·N )(1− e−kz·M )

k

= −1

2
log(1− e−z)− 1

2

∞∑
k=1

1

k

(
e−kz(N+1) + e−kz(M+1) − e−kz(M+N+1)

)
= −1

2
log(1− e−z) +

1

2
log

(1− e−z(N+1))(1− e−z(M+1))

1− e−z(M+N+1)

=
1

2
log

(
1

z

)
+

1

2
log

(1− e−zN )(1− e−zM )

1− e−z(M+N)
+O(|z|),

10



where the last identity follows from the fact that limu→0
1
u log(1−e−u

u ) exists, and thus, the func-
tion 1

u log(1−e−u
u ) is bounded around u = 0, implying that

1

2
log

(
1

z

)
= −1

2
log(1− e−z) +O(|z|).

Hence, we have for the first term on the RHS of (2.13) that

z ·
∞∑
k=1

(1− e−kz·N )(1− e−kz·M )

(
1

k2z2
− e−kz

2kz

)
=

1

z

(
π2

6
+ Li2(e−z(N+M))− Li2(e−zN )− Li2(e−zM )

)
− 1

2
log

(
1

z

)
− 1

2
log

(1− e−zN )(1− e−zM )

1− e−z(M+N)
+O(|z|).

(2.14)

Now we calculate the second term on the RHS of (2.13). We have∫ ∞
0

ψ(x) dx =

∫ ∞
0

ψ2(x) dx+

∫ ∞
0

(e−(N+M)x − e−Nx − e−Mx)ψ2(x) dx

= − log
√

2π +

∫ ∞
0

(e−(N+M)x − e−Nx − e−Mx)ψ2(x) dx,

where the calculation of
∫∞

0 ψ2(x) dx = − log
√

2π is given in [13, Page 125]. Since ψ2(x) is
bounded, we have∣∣∣∣∫ ∞

0
(e−(N+M)x − e−Nx − e−Mx)ψ2(x) dx

∣∣∣∣ = O

(∫ ∞
0

(e−(N+M)x + e−Nx + e−Mx) dx

)
= O

(
1

M +N
+

1

N
+

1

M

)
= O(|z|).

Hence, ∫ ∞
0

ψ(x) dx = − log
√

2π +O(|z|). (2.15)

Putting the equations (2.13), (2.14) and (2.15) together, we prove Lemma 2.3.

We will use the following lemma to change the variables in our calculations. Instead of us-
ing directly the variables α and β in Theorem 1, we will use the variables c1 and c2 defined in
(2.16) in the next lemma, which will significantly simplify our calculations. So we will derive our
asymptotic formula of pn(N,M) in terms of c1 and c2 first, and change back to α and β in the
end.

LEMMA 2.4. For every α, β ∈ (0,∞) such that αβ > 2, there exist unique c1, c2 > 0 satisfying
the equations:

c1 = α ·A(c1, c2), c2 = β ·A(c1, c2), (2.16)

where

A(c1, c2) =

√∫ c1

0

x

ex − 1
dx−

∫ c1+c2

c2

x

ex − 1
dx. (2.17)

11



Moreover, if min(α, β) ≥
√

2 + δ for some δ > 0, then there exist two constants A > 0 and c̄ > 0
both depending only on δ such that

min(c1, c2) ≥ c̄ and A(c1, c2) ≥ A. (2.18)

In particular, if min(α, β) ≥ 4, then min(c1, c2) ≥ 13/5.

Proof. Note that the quantity inside of the square root of (2.17) is positive since the function x
ex−1

is strictly decreasing for x ≥ 0. Denote λ = β/α for brevity. Consider

b(t) = A(t, λt)2 − (t/α)2, t > 0.

We have

b′(t) =
t

et − 1
− λ2t

eλt − 1
− (1 + λ)2t

e(1+λ)t − 1
− 2t

α2

= φ(t) + λφ(λt)− (1 + λ)φ((1 + λ)t),

where
φ(t) =

t

et − 1
+

t

αβ
.

It is elementary to check that φ is convex for t ≥ 0, and thus, φ′ is strictly increasing. Moreover,
one can also verify that φ′(0) = −1

2 + 1
αβ < 0 since αβ > 2, and φ′(t) > 0 if t is large. Hence,

there exists t0 > 0 such that φ′(t) < 0 in (0, t0) and φ′(t) > 0 in (t0,∞). That is, φ(t) is strictly
decreasing in (0, t0). Therefore, if 0 < (1 + λ)t ≤ t0, then

b′(t) = φ(t) + λφ(λt)− (1 + λ)φ((1 + λ)t) > 0.

If (1 + λ)t > t0, since φ′ is strictly increasing, we have

b′′(t) = φ′(t) + λ2φ′(λt)− (1 + λ)2φ′((1 + λ)t)

< φ′((1 + λ)t) + λ2φ′((1 + λ)t)− (1 + λ)2φ′((1 + λ)t) < 0.

Hence, we have that b′(t) is positive when 0 < t ≤ t0
1+λ , and then is decreasing for t > t0

1+λ .
Since b′(t) → −∞ as t → ∞, then we know that there exists t̄ such that b′(t) > 0 if t ∈ (0, t̄)
and b′(t) < 0 if t ∈ (t̄,∞). That is, b(t) is strictly increasing when t ∈ (0, t̄) and b(t) is strictly
decreasing when t ∈ (t̄,∞). Since b(0) = 0 and limt→+∞ b(t) = −∞, there exists a unique
c1 > 0 such that b(c1) = 0. This proves the existence and uniqueness of c1, c2 > 0, which are
solutions to (2.16).

To prove (2.18), without loss of generality, we assume α ≤ β and thus c1 ≤ c2. Since the
function x

ex−1 is strictly decreasing, we observe that

c2
1 = α2A(c1, c2) ≥ α2

(∫ c1

0

x

ex − 1
dx−

∫ 2c1

c1

x

ex − 1
dx

)
.

That is

α2 ≤ c2
1∫ c1

0
x

ex−1 dx−
∫ 2c1
c1

x
ex−1 dx

→ 2 as c1 → 0+.
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Therefore, if α ≥
√

2 + δ for some δ > 0, then c1 ≥ c̄ for some c̄ > 0 depending only on δ.
Moreover, for

B(c1) :=

∫ c1

0

x

ex − 1
dx−

∫ 2c1

c1

x

ex − 1
dx,

we have
d

dc1
B(c1) =

2c1

ec1 + 1
> 0.

Therefore, B(c1) is increasing, and thus, for all c2 ≥ c1 ≥ c̄, we have

A(c1, c2) ≥
√
B(c1) ≥

√∫ c̄

0

x

ex − 1
dx−

∫ 2c̄

c̄

x

ex − 1
dx =: A > 0.

Now we will show that min(c1, c2) ≥ 13/5 if we suppose min(α, β) ≥ 4. Without loss of
generality, we assume α ≤ β. Hence, λ = β/α ≥ 1. Since x

ex−1 is decreasing,

b(t) ≥ A(t, t)2 − (t/α)2 =

∫ t

0

x

ex − 1
dx−

∫ 2t

t

x

ex − 1
dx− t2

α2

=
t2

et − 1
− 2t2

e2t − 1
+

∫ t

0

x2ex

(ex − 1)2
dx−

∫ 2t

t

x2ex

(ex − 1)2
dx− t2

α2

≥ t2

et − 1
− 2t2

e2t − 1
− t2

α2
,

where we used integration by parts in the second equality, and the fact that x2ex

(ex−1)2
is decreasing

in x in the last inequality. From this, one can verify that if α ≥ 4, then b(13/5) > 0. It is clear
that b(0) = 0 and limt→−∞ b(t) = −∞. Moreover, we know from the proof of Lemma 2.4 that
b(t) (which is the same as the b(t) there) is strictly increasing in (0, t̄) and strictly decreasing in
(t̄,∞) for some t̄ > 0. Therefore, we know that the unique solution c1 of b(c1) = 0 satisfies that
(c2 >)c1 > 13/5.

By (2.6), we also can express

A(c1, c2)2 = Li2(1− e−c1) + Li2(1− e−c2)− Li2(1− e−c1−c2)

=
π2

6
+ Li2(e−c1−c2)− Li2(e−c1)− Li2(e−c2)

− (c1 + c2) log(1− e−c1−c2) + c1 log(1− e−c1) + c2 log(1− e−c2). (2.19)

Therefore,

π2

6
+ Li2(e−c1−c2)− Li2(e−c1)− Li2(e−c2)

= A(c1, c2)2 + c1 log

(
1− e−c1−c2

1− e−c1

)
+ c2 log

(
1− e−c1−c2

1− e−c2

)
≥ A(c1, c2)2.

(2.20)

These two formulae (2.19) and (2.20) will be used later.
The next technical lemma will be used to estimate the error term in Section 3.2, which we

include here for convenience. For a complex number z, we denote Re(z) as the real part of z, and
Im(z) as the imaginary part of z.
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LEMMA 2.5. Suppose min(α, β) ≥ 4, and let c1, c2 be as in Lemma 2.4. Define two functions:

ηc(x) = Re(Li2(e−c−icx)) + x · Im(Li2(e−c−icx)), (2.21)

H(x) =
1

1 + x2

(
π2

6
+ ηc1+c2(x)− ηc1(x)− ηc2(x)

)
. (2.22)

Then there exists a universal constant δ > 0 such that

H(x) ≤ H(0)− δx2

1 + x2
for all x > 0.

Proof. For convenience, denote

F (x) :=
π2

6
+ ηc1+c2(x)− ηc1(x)− ηc2(x).

Then F (0) = H(0). We are going to show there exists a universal constant δ > 0 such that

F ′(x) ≤ 2F (0)x− 2δx for all x > 0, (2.23)

from which it follows by integrating both sides that

H(x) ≤ H(0)− δx2

1 + x2
for all x > 0.

We have

F (x) =
π2

6
+

∞∑
k=1

e−(c1+c2)k

k2

(
cos(c1 + c2)kx− x sin(c1 + c2)kx

)
−
∞∑
k=1

e−c1k

k2

(
cos(c1kx)− x sin(c1kx)

)
−
∞∑
k=1

e−c2k

k2

(
cos(c2kx)− x sin(c2kx)

)
.

Therefore,

F ′(x)

=
∞∑
k=1

e−(c1+c2)k

k2

(
− (c1 + c2)k sin(c1 + c2)kx− sin(c1 + c2)kx− (c1 + c2)kx cos(c1 + c2)kx

)
+

∞∑
k=1

e−c1k

k2

(
c1k sin(c1kx)− sin(c1kx) + c1kx cos(c1kx)

)
+

∞∑
k=1

e−c2k

k2

(
c2k sin(c2kx)− sin(c2kx) + c2kx cos(c2kx)

)
≤
∞∑
k=1

e−(c1+c2)k

k2

(
(c1 + c2)2k2x+ 2(c1 + c2)kx

)
+

∞∑
k=1

e−c1k

k2

(
c2

1k
2x+ 2c1kx

)
+

∞∑
k=1

e−c2k

k2

(
c2

2k
2x+ 2c2kx

)
= x

( (c1 + c2)2

ec1+c2 − 1
− 2(c1 + c2) log(1− e−(c1+c2))

+
c2

1

ec1 − 1
− 2c1 log(1− e−c1) +

c2
2

ec2 − 1
− 2c2 log(1− e−c2)

)
.

14



Let

ζ(c) =
c2

ec − 1
− 2c log(1− e−c) + 2Li2(e−c).

Then ζ(0) = π2/3 and limc→∞ ζ(c) = 0. Also, ζ is strictly decreasing since

ζ ′(c) = − c2ec

(ec − 1)2
< 0.

Therefore, there exists c̄ to be the unique solution of ζ(c̄) = 111π2

1000 . Then we have

F ′(x)

x
− 2F (0) ≤ ζ(c1 + c2) + ζ(c1) + ζ(c2)− π2

3
− 4Li2(e−(c1+c2))

≤ 3ζ(c̄)− π2

3

= − π2

3000
=: −2δ (2.24)

as long as min(c1, c2) ≥ c̄.
Let us estimate the value of c̄. Notice that

Li2(e−c) =

∞∑
k=1

e−ck

k2
< e−c +

∞∑
k=2

e−ck

22
= e−c +

e−2c

4(1− e−c)
=

4ec − 3

4(e2c − ec)
.

Hence

ζ(c) <
c2

ec − 1
− 2c log(1− e−c) +

4ec − 3

2(e2c − ec)
.

Using the above estimate, we can verify that ζ(13/5) < 111π2/1000. Since ζ is decreasing, we
have c̄ < 13/5.

Since we assume that min(α, β) ≥ 4, we know from Lemma 2.4 that min(c1, c2) ≥ 13/5.
Therefore, min(c1, c2) ≥ c̄, and thus, (2.24) holds. This proves Lemma 2.5.

3 Proof of the main result

Now we will start to prove our main result.

Proof of Theorem 1. Since pn(N,M) = pn(M,N), without loss of generality we can assume
N ≤M . Recall

α =
N√
n
, β =

M√
n
,

and also recall our assumption that min(α, β) ≥ 4. Let c1, c2 be the solutions of (2.16) with
A(c1, c2) defined in (2.17). Set

v =
A(c1, c2)√

n
and w0 =

1

n
3
4
− ε

3

.

15



Then N · v = c1 and M · v = c2. First, we observe from the definition of A(c1, c2) in (2.17) that

A(c1, c2) ≤

√∫ ∞
0

x

ex − 1
dx <∞. (3.1)

Secondly, since we have assumed that α, β ≥ 4, we know from Lemma 2.4 that there exist two
positive universal constants c̄ and A such that

min(c1, c2) ≥ c̄ > 0 and A(c1, c2) ≥ A > 0. (3.2)

These two universal lower bounds are important to prove the uniform estimate in the next subsec-
tion. Since we assumed that N ≤M at the beginning of this proof, it follows that c1 ≤ c2.

Recall the integral (2.8) that

pn(N,M) =
1

2π

∫ π

−π
elog f(v+iw)en(v+iw) dw

=
1

2π

∫ w0

−w0

elog f(v+iw)en(v+iw) dw +
1

2π

∫ π

w0

elog f(v+iw)en(v+iw) dw

+
1

2π

∫ −w0

−π
elog f(v+iw)en(v+iw) dw

=: I1 + I2 + I3. (3.3)

We will show that I1 is the main term, and both I2 and I3 are lower order terms.

3.1 Estimate the main term I1.

Let z = v+ iw for −w0 ≤ w ≤ w0. Since v = A(c1, c2)n−1/2 and w0 = n−3/4+ε/3, by recalling
(3.2), we have min(N,M) · |z| ≥ min(c1, c2) ≥ c̄ > 0 and |w/v| ≤ |w0/v| = o(1). Then we can
apply Lemma 2.3 to obtain

log f(z) =
1

z

(
π2

6
+ Li2(e−z(N+M))− Li2(e−zN )− Li2(e−zM )

)
−1

2
log

(
1

z

)
− 1

2
log

(1− e−zN )(1− e−zM )

1− e−z(N+M)
− log

√
2π +O(|z|).

In particular,

log f(v) =
1

v

(
π2

6
+ Li2(e−v(N+M))− Li2(e−vN )− Li2(e−vM )

)
−1

2
log

(
1

v

)
− 1

2
log

(1− e−vN )(1− e−vM )

1− e−v(N+M)
− log

√
2π +O(v). (3.4)
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Now we compare the above two terms,

log f(v + iw)− log f(v)

=
π2

6

(
1

z
− 1

v

)
+

(
Li2(e−z(N+M))

z
− Li2(e−v(N+M))

v

)
−
(

Li2(e−zN )

z
− Li2(e−vN )

v

)
−
(

Li2(e−zM )

z
− Li2(e−vM )

v

)
− 1

2

(
log
(1

z

)
− log

(1

v

))
+

1

2
log

1− e−z(N+M)

1− e−v(N+M)

−1

2
log

1− e−zN

1− e−vN
− 1

2
log

1− e−zM

1− e−vM
+O(|z|) +O(v)

=: J1 + J2 − J3 − J4 −H +K1 −K2 −K3 +O(v). (3.5)

We are going to estimate each term on the right hand side of (3.5).
Let us calculate J1 first. Since

1

z
− 1

v
=

1

v + iw
− 1

v
=

1

v

(
1

1 + iwv
− 1

)
= −i w

v2
− w2

v3
+O

(
w3

0

v4

)
,

we obtain

1

z
=

1

v
− i w

v2
− w2

v3
+O

(
w3

0

v4

)
, (3.6)

and thus,

J1 =
π2

6

(
−i w
v2
− w2

v3

)
+O

(
w3

0

v4

)
.

Now let us calculate J3 in (3.5). Notice that J2 and J4 are in the same form as J3, so they can
be estimated in the same way. Using the property of Spence’s function ∂

∂uLi2(z) = −1
z log(1−z)

for z ∈ C \ [1,∞), one has

∂

∂u
Li2(e−u) = eu log(1− e−u)e−u = log(1− e−u);

∂2

∂u2
Li2(e−u) =

e−u

1− e−u
=

1

eu − 1
.

Therefore, with noting that N · v = c1,

Li2(e−zN )− Li2(e−vN ) = iwN log(1− e−vN )− 1

2

1

evN − 1
w2N2 +O

(
w3

0

v3

)
,
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where in the last term O(·) we used that c1 ≥ c̄ > 0 independent of n. Thus

J3 =
Li2(e−zN )

z
− Li2(e−vN )

v

=
1

z

(
Li2(e−zN )− Li2(e−vN )

)
+

(
1

z
− 1

v

)
Li2(e−vN )

=

(
1

v
− i w

v2
− w2

v3
+O

(w3
0

v4

))
·
(
iwN log(1− e−vN )− 1

2

1

evN − 1
w2N2 +O

(w3
0

v3

))
+

(
−i w
v2
− w2

v3
+O

(w3
0

v4

))
Li2(e−vN ).

Since by our assumption N · v = c1, v = A(c1, c2) · n−1/2 and w0/v = o(1), it follows that

J3 = i
wc1

v2
log(1− e−c1)− w2

2v3

c2
1

ec1 − 1
+
w2c1

v3
log(1− e−c1)− i w

v2
Li2(e−c1)

−w
2

v3
Li2(e−c1) +O

(
w3

0

v4

)
= −iwn · −c1 log(1− e−c1) + Li2(e−c1)

A(c1, c2)2

−w2 · n3/2

A(c1, c2)3

(
−c1 log(1− e−c1) + Li2(e−c1) +

1

2

c2
1

ec1 − 1

)
+O

(
w3

0

v4

)
.

We estimate the other two terms J2 and J4 in the same way. Therefore

J1 + J2 − J3 − J4

= −iwn · 1

A(c1, c2)2

(π2

6
+ Li2(e−c1−c2)− Li2(e−c1)− Li2(e−c2)

−(c1 + c2) log(1− e−c1−c2) + c1 log(1− e−c1) + c2 log(1− e−c2)
)

−w2 · n3/2

A(c1, c2)3

(π2

6
+ Li2(e−c1−c2)− Li2(e−c1)− Li2(e−c2)

−(c1 + c2) log(1− e−c1−c2) + c1 log(1− e−c1) + c2 log(1− e−c2)

+
1

2

(c1 + c2)2

ec1+c2 − 1
− 1

2

c2
1

ec1 − 1
− 1

2

c2
2

ec2 − 1

)
+O

(
w3

0

v4

)
.

By recalling (2.19), we eventually get

J1 + J2 − J3 − J4

= −iwn− w2 · n3/2

A(c1, c2)3

(
A(c1, c2)2 +

1

2

(c1 + c2)2

ec1+c2 − 1
− 1

2

c2
1

ec1 − 1
− 1

2

c2
2

ec2 − 1

)
+O

(
w3

0

v4

)
. (3.7)

Now let us estimate H in (3.5). Since for n sufficiently large, |w/v| < 1/2, we have that∣∣∣∣log
(1

z

)
− log

(1

v

)∣∣∣∣ =
∣∣∣log

(
1 + i

w

v

)∣∣∣ ≤ ∞∑
k=1

1

k

∣∣∣w
v

∣∣∣k ≤ |w/v|
1− |w/v|

= O
(w0

v

)
,
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and thus

H = O
(w0

v

)
. (3.8)

Now let us estimate K1,K2 and K3 in (3.5). These three quantities are in the same form, so
we just show the details for K2. Since

∂

∂u
log(1− e−u) =

e−u

1− e−u
=

1

eu − 1
;

∂2

∂u2
log(1− e−u) = − eu

(eu − 1)2
,

we obtain

2K2 = log
1− e−zN

1− e−vN
= log(1− e−vN−iwN )− log(1− e−vN )

=
iwN

evN − 1
+

1

2

evN

(evN − 1)2
w2N2 +O

(
w3

0

v3

)
.

Since N · v = c1, v = A(c1, c2) · n−1/2 and w0/v = o(1),

K2 = O
(w0

v

)
.

Similarly, Ki = O(w0
v ) for i = 1, 3 and thus,

K1 −K2 −K3 = O
(w0

v

)
. (3.9)

Plugging (3.7), (3.8) and (3.9) into (3.5), we arrive at

log f(v + iw)− log f(v)

= −iwn− w2 · n3/2

A(c1, c2)3

(
A(c1, c2)2 +

1

2

(c1 + c2)2

ec1+c2 − 1
− 1

2

c2
1

ec1 − 1
− 1

2

c2
2

ec2 − 1

)
+O

(
w3

0

v4

)
+O(v) +O

(w0

v

)
= −iwn− 1

2
w2n3/2S(c1, c2) +O(n−1/4+ε), (3.10)

where for convenience we denoted

S(c1, c2) =
1

A(c1, c2)3

(
2A(c1, c2)2 +

(c1 + c2)2

ec1+c2 − 1
− c2

1

ec1 − 1
− c2

2

ec2 − 1

)
.

In obtaining the term of O(n−1/4+ε) in (3.10), we used that A(c1, c2) is bounded from above and
below by two universal positive constants (see (3.1) and (3.2)).

We now show that S(c1, c2) is bounded from above and from below by two universal positive
constants. Recall that

A(c1, c2)2 =

∫ c1

0

x

ex − 1
dx−

∫ c1+c2

c2

x

ex − 1
dx.
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By integration by parts (noticing that we assumed α ≤ β, so that c1 ≤ c2), we have

L(c1, c2) := 2A(c1, c2)2 +
(c1 + c2)2

ec1+c2 − 1
− c2

1

ec1 − 1
− c2

2

ec2 − 1

=

∫ c1

0

x2ex

(ex − 1)2
dx−

∫ c1+c2

c2

x2ex

(ex − 1)2
dx

≥
∫ c1

0

x2ex

(ex − 1)2
dx−

∫ 2c1

c1

x2ex

(ex − 1)2
dx =: B̃(c1).

(3.11)

as the function x2ex/(ex − 1)2 is strictly decreasing for x ≥ 0 (which can be elementarily verified
by showing that its derivative is negative). Since

d

dc
B̃(c) =

2c2ec

(ec + 1)2
> 0,

B̃(c) is increasing in c. Thus, continuing from (3.11) and using min(c1, c2) ≥ c̄ in (3.2), we
obtain

0 < B̃(c̄) ≤ B̃(c1) ≤ L(c1, c2) ≤
∫ ∞

0

x2ex

(ex − 1)2
dx <∞. (3.12)

Using (3.1) and (3.2), we conclude that S(c1, c2) = L(c1, c2)A(c1, c2)−3 is bounded from above
and from below by two universal positive constants.

Using (3.10), we can estimate the term

I1 =
1

2π

∫ w0

−w0

elog f(v+iw)en(v+iw) dw

=
1

2π

∫ w0

−w0

elog f(v)−iwn− 1
2
w2n3/2S(c1,c2)+O(n−1/4+ε)en(v+iw) dw

= exp(log f(v) + nv +O(n−1/4+ε)) · 1

2π

∫ w0

−w0

e−
1
2
w2n3/2S(c1,c2) dw. (3.13)

For the first term, since we have from (3.4) that

log f(v) =
n1/2

A(c1, c2)

(
π2

6
+ Li2(e−c1−c2)− Li2(e−c1)− Li2(e−c2)

)
−1

2
log

( √
n

A(c1, c2)

)
− 1

2
log

(1− e−c1)(1− e−c2)

1− e−c1−c2
− log

√
2π +O(v),

it follows that

exp(log f(v) + nv +O(n−1/4+ε))

=
1√
2π

√
A(c1, c2)

n1/4

√
1− e−(c1+c2)

(1− e−c1)(1− e−c2)
· e
√
nK(c1,c2)

(
1 +O(n−1/4+ε)

)
, (3.14)

where

K(c1, c2) = A(c1, c2) +
1

A(c1, c2)

(
π2

6
+ Li2(e−(c1+c2))− Li2(e−c1)− Li2(e−c2)

)
.
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For the other term, by setting t =
√
S(c1, c2)n3/4 · w, we get∫ w0

−w0

e−
1
2
w2n3/2S(c1,c2) dw =

1√
S(c1, c2)n3/4

∫ √S(c1,c2)nε/3

−
√
S(c1,c2)nε/3

e−t
2/2 dt

=
1√

S(c1, c2)n3/4

(∫ ∞
−∞

e−t
2/2 dt− 2

∫ ∞
√
S(c1,c2)nε/3

e−t
2/2 dt

)

=
1√

S(c1, c2)n3/4

(
√

2π +O
( 2√

S(c1, c2)nε/3
e−

S(c1,c2)
2

n2ε/3
))

=

√
2π√

S(c1, c2)n3/4

(
1 +O(n−1/4+ε)

)
, (3.15)

where in the last equality we used the fact that S(c1, c2) bounded from above and from below by
two universal positive constants.

Finally, putting (3.13), (3.14) and (3.15) together, we have

I1 =
1

2π

√
A(c1, c2)√
S(c1, c2)

√
1− e−(c1+c2)

(1− e−c1)(1− e−c2)
· e
√
nK(c1,c2)

n
(1 +O(n−1/4+ε))

=
A(c1, c2)2

2π
√
L(c1, c2)

√
1− e−(c1+c2)

(1− e−c1)(1− e−c2)
· e
√
nK(c1,c2)

n
(1 +O(n−1/4+ε)), (3.16)

where

K(c1, c2) = A(c1, c2) +
1

A(c1, c2)

(
π2

6
+ Li2(e−(c1+c2))− Li2(e−c1)− Li2(e−c2)

)
;

L(c1, c2) = 2A(c1, c2)2 +
(c1 + c2)2

ec1+c2 − 1
− c2

1

ec1 − 1
− c2

2

ec2 − 1
.

We know from (3.1), (3.2) and (3.12) thatA(c1, c2) and L(c1, c2) are bounded from above and
from below by two universal positive constants. Since min(c1, c2) ≥ c̄ > 0, we have√

1− e−2c̄ ≤

√
1− e−(c1+c2)

(1− e−c1)(1− e−c2)
≤ 1

1− e−c̄
. (3.17)

Using (2.20) and Li2(1) = π2

6 , we have

2A(c1, c2) ≤ K(c1, c2) ≤ A(c1, c2) +
π2

3A(c1, c2)
. (3.18)

This implies that K(c1, c2) is also bounded from above and from below by two universal positive
constants.

Hence, all ofA(c1, c2), L(1, c2),K(c2, c2) and
√

1−e−(c1+c2)

(1−e−c1 )(1−e−c2 )
in (3.16) are bounded from

above and from below by two universal positive constants. To prove that I2 and I3 in (3.3) are
lower order terms compared to I1, it suffices to show that

|I2|+ |I3| = o

(
exp{

√
nK(c1, c2)}
n

5
4
−ε

)
.

We will prove the above estimate in the next subsection.
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3.2 Estimate the remainder terms I2 and I3.

It is enough to estimate I2 in (3.3). The proof for I3 is identical. Let w1 = C · v where C is
a universally large constant to be fixed in Step 2 below (one will see later that C = 20π would
suffice). We further split I2 into two parts.

I2 =
1

2π

∫ π

w0

f(v + iw)en(v+iw) dw

=
1

2π

∫ w1

w0

f(v + iw)en(v+iw) dw +
1

2π

∫ π

w1

f(v + iw)en(v+iw) dw

=: I ′2 + I ′′2 . (3.19)

Step 1. Estimate the term I ′2. Note that for z = v + iw with w0 ≤ w ≤ w1, the hypothesis of
Lemma 2.3 is satisfied. Thus

log f(z) =
1

z

(
π2

6
+ Li2(e−z(N+M))− Li2(e−zN )− Li2(e−zM )

)
−1

2
log

(
1

z

)
− 1

2
log

(1− e−zN )(1− e−zM )

1− e−z(N+M)
+O(1)

and

|I ′2| =

∣∣∣∣ 1

2π

∫ w1

w0

elog f(v+iw)+n(v+iw) dw

∣∣∣∣
=

∣∣∣eO(1)

∫ w1

w0

√
z ·

√
1− e−z(N+M)

(1− e−zN )(1− e−zM )

· exp

{
1

z

(π2

6
+ Li2(e−z(N+M))− Li2(e−zN )− Li2(e−zM )

)
+ nv + inw

}
dw
∣∣∣

.
∫ w1

w0

√
|z| ·

√
|1− e−z(N+M)|

|1− e−zN | · |1− e−zM |

· exp

{
Re

1

z

(π2

6
+ Li2(e−z(N+M))− Li2(e−zN )− Li2(e−zM )

)
+ nv

}
dw.

Since |z| = O(v), and

2 ≥ |1− e−zN | = |1− e−vN−iwN | ≥ 1− |e−vN−iwN | = 1− e−vN = 1− e−c1 ,

we conclude that (recalling v = A(c1, c2)n−1/2),

|I ′2| .
√
v

∫ w1

w0

exp{Re
1

z

(π2

6
+ Li2(e−z(N+M))− Li2(e−zN )− Li2(e−zM )

)
+ nv} dw

=
√
v · e

√
nK(c1,c2)

∫ w1

w0

exp
{

Re
1

z

(π2

6
+ Li2(e−z(N+M))− Li2(e−zN )− Li2(e−zM )

)
− 1

v

(π2

6
+ Li2(e−v(N+M))− Li2(e−vN )− Li2(e−vM )

)}
dw. (3.20)
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Let us denote

D :=
1

z

(
π2

6
+ Li2(e−z(N+M))− Li2(e−zN )− Li2(e−zM )

)
−1

v

(
π2

6
+ Li2(e−v(N+M))− Li2(e−vN )− Li2(e−vM )

)
. (3.21)

Next we are going to show that

Re(D) ≤ −w
2

v3
· T (3.22)

for some universal constant T > 0, where Re(D) is the real part of D.
We first get

Re
(

Li2(e−c1−iwN )

z

)
= Re

( v − iw
v2 + w2

Li2(e−c1−iwN )
)

=
1

v2 + w2

{
vRe(Li2(e−c1−iwN )) + wIm(Li2(e−c1−iwN ))

}
=

v

v2 + w2

{
Re(Li2(e−c1−ic1

w
v )) +

w

v
· Im(Li2(e−c1−ic1

w
v ))
}

=
1

v
· 1

1 + (w/v)2

{
Re(Li2(e−c1−ic1

w
v )) +

w

v
· Im(Li2(e−c1−ic1

w
v ))
}
.

Therefore,

v · Re(D) =
1

1 + (wv )2

(
π2

6
+ ηc1+c2

(w
v

)
− ηc1

(w
v

)
− ηc2

(w
v

))
−
(
π2

6
+ ηc1+c2(0)− ηc1(0)− ηc2(0)

)
= H

(w
v

)
−H(0),

where ηc is defined in (2.21) andH is defined in (2.22). By Lemma 2.5, we have for 0 < w/v ≤ C
that

v · Re(D) = H
(w
v

)
−H(0) ≤ − δ

1 + C2

w2

v2
=: −T w

2

v2
.

This proves (3.22).
Therefore, continuing from (3.20) with the help of (3.22), we have that

|I ′2| .
√
v · e

√
nK(c1,c2)

∫ w1

w0

exp{−w2T/v3}dw

.
√
v · e

√
nK(c1,c2) 1

w0

∫ w1

w0

w exp{−w2T/v3}dw

.
A(c1, c2)

7
2

2Tn1+ ε
3

exp

{
√
nK(c1, c2)− Tn

2ε
3

A(c1, c2)3

}

= o

(
exp{

√
nK(c1, c2)}
n

5
4
−ε

)
. (3.23)
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This finishes the estimate of I ′2, which is indeed a lower order term compared to I1.
Step 2. Estimate the term I ′′2 . Recall that

log f(z) =
∞∑
k=1

1

k

(1− e−kz·N )(1− e−kz·M )

ekz − 1

and
I ′′2 =

1

2π

∫ π

w1

elog f(v+iw)+n(v+iw) dw, (3.24)

where w1 = C · v with C being a large constant (to be determined below).
First, note that |ek(v+iw) − 1| ≥ ekv − 1 ≥ kv. Secondly, we have

|ez − 1| = |ev+iw − 1| =
√

(ev cosw − 1)2 + e2v sin2w

=

√
(ev − 1)2 + 4ev sin2(w/2),

and thus,

|ev+iw − 1| ≥ 2 sin(w/2) ≥ 2w/π

which follows from the inequality that sin θ ≥ 2
πθ for 0 ≤ θ ≤ π/2.

It follows that

| log f(v + iw)|

=
∣∣∣ ∞∑
k=1

1

k

(1− e−k(v+iw)N )(1− e−k(v+iw)M )

ek(v+iw)−1

∣∣∣
≤ 2π

Cv
+

1

v

∞∑
k=2

(1 + e−kc1)(1 + e−kc2)

k2

≤ 2π

Cv
+

1

v

∞∑
k=1

(1 + e−kc1)(1 + e−kc2)

k2
− 1

v
(1 + e−c1)(1 + e−c2)

=
1

v

(
2π

C
+
π2

6
+ Li2(e−(c1+c2)) + Li2(e−c1) + Li2(e−c2)− (1 + e−c1)(1 + e−c2)

)
.

We claim that for C sufficiently large, we have

4π

C
+
π2

6
+ Li2(e−(c1+c2)) + Li2(e−c1) + Li2(e−c2)− (1 + e−c1)(1 + e−c2)

≤ π2

6
+ Li2(e−(c1+c2))− Li2(e−c1)− Li2(e−c2). (3.25)

Suppose the above inequality (3.25) holds. Then continuing from (3.24), we have

|I ′′2 | ≤
1

2π

∫ π

w1

e| log f(v+iw)|+nv dw

≤ 1

2π

∫ π

w1

e
√
n(K(c1,c2)−2π/C) dw = o

(
exp{

√
nK(c1, c2)}
n

5
4
−ε

)
. (3.26)
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Now we are left to prove (3.25), which is equivalent to

2π

C
+ Li2(e−c1) + Li2(e−c2) ≤ (1 + e−c1)(1 + e−c2)

2
.

Since we assume that min(α, β) ≥ 4, we know from Lemma 2.4 that min(c1, c2) ≥ 13/5 > 2.
Hence,

Li2(e−c1) ≤ e−c1

1− e−c1
=

1

ec1 − 1
≤ 1

e2 − 1
<

1

5
,

and similarly Li2(e−c2) ≤ 1/5. Hence, we only need to choose C large so that

2π

C
+

2

5
≤ 1

2
.

Therefore, C = 20π would suffice.
From (3.19), (3.23) and (3.26), we obtained that

|I2| ≤ o
(

exp{
√
nK(c1, c2)}
n

5
4
−ε

)
. (3.27)

Since I3 is in the same form as I2 defined in (3.3), one can show similarly that

|I3| ≤ o
(

exp{
√
nK(c1, c2)}
n

5
4
−ε

)
. (3.28)

3.3 Asymptotic formula

Combining (3.3), (3.16), (3.27) and (3.28), we obtain

pn(N,M) =
A(c1, c2)2

2π
√
L(c1, c2)

√
1− e−(c1+c2)

(1− e−c1)(1− e−c2)
· e
√
nK(c1,c2)

n

(
1 +O(n−1/4+ε)

)
, (3.29)

where

K(c1, c2) = A(c1, c2) +
1

A(c1, c2)

(
π2

6
+ Li2(e−(c1+c2))− Li2(e−c1)− Li2(e−c2)

)
;

L(c1, c2) = 2A(c1, c2)2 +
(c1 + c2)2

ec1+c2 − 1
− c2

1

ec1 − 1
− c2

2

ec2 − 1
.

By recalling (2.17) and (3.11), we have the explicit integral representation for A(c1, c2) and
L(c1, c2):

A(c1, c2) =

√∫ c1

0

x

ex − 1
dx−

∫ c1+c2

c2

x

ex − 1
dx,

L(c1, c2) =

∫ c1

0

x2ex

(ex − 1)2
dx−

∫ c1+c2

c2

x2ex

(ex − 1)2
dx.

Therefore, all the terms in the equation (3.29) are explicit.
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The last step is to express the asymptotic formula in terms of α, β instead of c1, c2. Recall that
c1 = αA(c1, c2) and c2 = βA(c1, c2). We denote g(α, β) = A(c1, c2) > 0 and g(α, β) satisfies

g2(α, β) =

∫ αg(α,β)

0

x

ex − 1
dx−

∫ (α+β)g(α,β)

βg(α,β)

x

ex − 1
dx

or equivalently,

g2(α, β) = Li2(1− e−αg(α,β)) + Li2(1− e−βg(α,β))− Li2(1− e−(α+β)g(α,β)).

The uniqueness and existence of g(α, β) > 0 is guaranteed by Lemma 2.4. Then by recalling
(3.29), we have

pn(N,M)

=
g(α, β)2

2π
√
L(α, β)

√
1− e−(α+β)g(α,β)

(1− e−αg(α,β))(1− e−βg(α,β))
· e
√
nK(α,β)

n
(1 +O(n−1/4+ε)), (3.30)

where

K(α, β) = g(α, β) +
1

g(α, β)

(
π2

6
+ Li2(e−(α+β)g(α,β))− Li2(e−αg(α,β))− Li2(e−βg(α,β))

)
and

L(α, β) = 2g2(α, β) +
(α+ β)2g2(α, β)

e(α+β)g(α,β) − 1
− α2g2(α, β)

eαg(α,β) − 1
− β2g2(α, β)

eαg(α,β) − 1
.

Since min(α, β) ≥ 4, it follows from Lemma 2.4 that min(c1, c2) ≥ 13/5. By (3.1), (3.2),

(3.12), (3.17) and (3.18), we know all of A(c1, c2), L(1, c2), K(c2, c2) and
√

1−e−(c1+c2)

(1−e−c1 )(1−e−c2 )
in

(3.29) are bounded from above and from below by two universal positive constants. Hence, all the
functions g(α, β), L(α, β), K(α, β) and

√
1−e−(α+β)g(α,β)

(1−e−αg(α,β))(1−e−βg(α,β)) in (3.30) are bounded from

above and from below by two universal positive constants. The error term O(n−1/4+ε) is also
uniform in α, β ∈ [4,∞].
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